首页 > 论文 > 发光学报 > 37卷 > 11期(pp:1399-1407)

像素分割对LED电流密度及光照度分布的影响

Current Density and Irradiance Distribution of Light-emitting-diode-array Device with Divided Pixels

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

将300 μm×300 μm LED芯片阵列化为间隔为20 μm的3×3个80 μm×80 μm的子单元, 阵列化后, 总饱和光输出功率是未阵列化前的5.19倍, 最大注入电流提高近7倍, 表明阵列可以注入更大的电流和输出更高的饱和光功率。此外, 采用多颗阵列化后的LED芯片形成的芯片组照明, 得知芯片组间距为最大平坦条件dmax时, 接收面上照度均匀性最佳; 芯片组数越多, 接收面上均匀照度的面积越大。同时, 9颗300 μm×300 μm的芯片阵列化为9个80 μm×80 μm LED芯片后, 以dmax排列照明相对于9颗未阵列化的300 μm×300 μm芯片以dmax排列照明时, 接收面上的光照度均匀性不变, 照度值提高了3倍。

Abstract

When a 300 μm×300 μm chip is divided into 3×3 small chips with 20 μm adjacent spacing, the total saturated output power enhances up to 5.19 times and the maximum inject current increases 7 times nearly. The consequences indicate LED chip with smaller pixels array can possess greater inject current and higher saturated output power than the primary chip. Meanwhile, the effects of chips number and LED chips distance for irradiance distribution on target plane illuminated by multi-LED chips are studied. The irradiance uniformity reaches its peaks when LED chip-to-chip distance equals to maximum flat condition dmax. In addition, the irradiance uniformity area is increasing when the number of LED chips increasing. When the target plane is illumined by nine 300 μm×300 μm LED chips with distance dmax and each chip is divided into nine 80 μm×80 μm smaller pixels, the irradiance value is 3 times as primary LED chips array while the uniformity of irradiance not changing.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN383+.1;O439

DOI:10.3788/fgxb20163711.1399

所属栏目:器件制备及器件物理

基金项目:国家自然科学基金(61274122); 吉林省科技发展计划(20100351, 20120323); 长春市科技计划(2013269)资助项目

收稿日期:2016-05-30

修改稿日期:2016-06-27

网络出版日期:--

作者单位    点击查看

包兴臻:中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033中国科学院大学, 北京 100049
梁静秋:中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
梁中翥:中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
秦余欣:中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
吕金光:中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033
王维彪:中国科学院长春光学精密机械与物理研究所 应用光学国家重点实验室, 吉林 长春 130033

联系人作者:包兴臻(baoxingzhen@126.com)

备注:包兴臻(1987-), 男, 甘肃庆阳人, 博士研究生, 2014年于中国科学院长春光学精密机械与物理研究所获得硕士学位, 主要从事LED微阵列器件设计及制作方面的研究。

【1】MENDES M, FU J, PORNEALA C, et al.. Lasers in the manufacturing of LEDs [J]. SPIE, 2010, 7584:75840T.

【2】董丽,刘华,王尧,等. 紧凑型LED配光设计中光源模型可靠性研究 [J]. 光子学报, 2014, 43(2):0222003.
DONG L, LIU H, WANG Y, et al.. Reliability of light source modeling for distribution design on compact LED [J]. Acta Photon. Sinica, 2014, 43(2):0222003. (in Chinese)

【3】廖锡昌,郑慧斐,袁敏,等. 发光二极管诱导荧光微芯片分析检测器的研制 [J]. 光学 精密工程, 2009, 17(12):2906-2911.
LIAO X C, ZHENG H F, YUAN M, et al.. High-power light-emitting-diode induced fluorescence detector for microfluidic chip analysis [J]. Opt. Precision Eng., 2009, 17(12):2906-2911. (in Chinese)

【4】DAY J, LI J, LIE D Y C, et al.. Ⅲ-nitride full-scale high-resolution microdisplays [J]. Appl. Phys. Lett., 2011, 99(3):031116-1-3.

【5】FAN Z Y, LIN J Y, JIANG H X. Ⅲ-nitride micro-emitter arrays: development and applications [J]. J. Phys. D, 2008, 41(9):094001-1-12.

【6】MCKENDRY J J D, GREEN R P, KELLY A E, et al.. High-speed visible Light communications using individual pixels in a micro light-emitting diode array [J]. IEEE Photon. Technol. Lett., 2010, 22(18):1346-1348.

【7】POHER V, GROSSMAN N, KENNEDY G T, et al.. Micro-LED arrays: a tool for two-dimensional neuron stimulation [J]. J. Phys. D, 2008, 41(9):094014-1-9.

【8】GONG Z, JIN S R, CHEN Y J, et al.. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes [J]. J. Appl. Phys., 2010, 107(1):013103-1-6.

【9】DAI L, ZHANG B, LIN J Y, et al.. Comparison of optical transitions in InGaN quantum well structures and microdisks [J]. J. Appl. Phys., 2001, 89(9):4951-4954.

【10】CHOI H W, JEON C W, DAWSON M D, et al.. Mechanism of enhanced light output efficiency in InGaN-based micro light emitting diodes [J]. J. Appl. Phys., 2003, 93(10):5978-5982.

【11】马建设,贺丽云,刘彤,等. 板上芯片集成封装的发光二极管结构设计 [J]. 光学 精密工程, 2013, 21(4):904-910.
MA J S, HE L Y, LIU T, et al.. Design of optical structure for chip-on-board wafer level packaging LEDs [J]. Opt. Precision Eng., 2013, 21(4):904-910. (in Chinese)

【12】田超,梁静秋,梁中翥,等. AlGaInP-LED微阵列单元的热效应分析 [J]. 发光学报, 2014, 35(7):840-845.
TIAN C, LIANG J Q, LIANG Z Z, et al.. Thermal analysis of AlGaInP-LED micro-cells [J]. Chin. J. Lumin., 2014, 35(7):840-845. (in Chinese)

【13】王加文,苏宙平,袁志军,等. LED阵列模组化中的照度均匀性问题 [J]. 光子学报, 2014, 43(8):0822004.
WANG J W, SU Z P, YUAN Z J, et al.. Study on uniformity of LED array illumination distribution on target plane [J]. Acta Photon. Sinica, 2014, 43(8):0822004. (in Chinese)

【14】KIM T I, JUNG Y H, SONG J Z, et al.. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates [J]. Small, 2012, 8(11):1643-1649.

【15】MEYAARD D S, SHAN Q F, CHO J, et al.. Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities [J]. Appl. Phys. Lett., 2012, 100(8):081106-1-3.

【16】FAN J M, WANG L C, GUO J X, et al.. Optimized design on high-power GaN-based micro-LEDs [J]. SPIE, 2007, 6841:684108-1-7.

【17】LIU H, TANG Z R, SHI T L, et al.. Optical and thermal modeling of ultraviolet-LED array packaging for curing application [J]. SPIE, 2008,7279: 72791k-1-7.

【18】GONG Z, JIN S R, CHEN Y J, et al.. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes [J]. J. Appl. Phys., 2010, 107(1):013103-1-5.

【19】GUO X, SCHUBERT E F. Current crowding in GaN/InGaN light emitting diodes on insulating substrates [J]. J. Appl. Phys., 2001, 90(8):4191-4195.

【20】GUO X, SCHUBERT E F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates [J]. Appl. Phys. Lett., 2001, 78(21):3337-3339.

【21】李贺,梁静秋,梁中翥,等. AlGaInP-LED发光阵列热场分析及散热设计 [J]. 发光学报, 2015, 36(10): 1212-1219.
LI H, LIANG J Q, LIANG Z Z, et al.. Thermal field analysis and heat dissipation design of AlGaInP-based LED light emitting array [J]. Chin. J. Lumin., 2015, 36(10):1212-1219. (in Chinese)

【22】KIM H, CHO J, LEE J W, et al.. Measurements of current spreading length and design of GaN-based light emitting diodes [J]. Appl. Phys. Lett., 2007, 90(6):063510-1-3.

【23】GONG Z, ZHANG H X, GU E, et al.. Matrix-addressable micropixellated inGaN light-emitting diodes with uniform emission and increased light output [J]. IEEE Trans. Electron Dev., 2007, 54(10):2650-2658.

【24】MORENO I, TZONCHEV R I. Effects on illumination uniformity due to dilution on arrays of LEDs [J]. SPIE, 2004, 5529:268-275.

【25】MORENO I. Configurations of LED arrays for uniform illumination [J]. SPIE, 2004, 5622:713-718.

引用该论文

BAO Xing-zhen,LIANG Jing-qiu,LIANG Zhong-zhu,QIN Yu-xin,LYU Jin-guang,WANG Wei-biao. Current Density and Irradiance Distribution of Light-emitting-diode-array Device with Divided Pixels[J]. Chinese Journal of Luminescence, 2016, 37(11): 1399-1407

包兴臻,梁静秋,梁中翥,秦余欣,吕金光,王维彪. 像素分割对LED电流密度及光照度分布的影响[J]. 发光学报, 2016, 37(11): 1399-1407

被引情况

【1】蔡文涛,尹韶云,向阳,孙秀辉,杜春雷,杨若夫. 紫外LED阵列匀光照明中失效安全设计. 光子学报, 2018, 47(4): 422002--1

【2】班章. 微型倒装AlGaInP发光二极管阵列器件的光电性能. 光学学报, 2018, 38(9): 923001--1

【3】余恒炜,孙晓娟,王星辰,蒋 科,吴 忧,程东碧,石芝铭,贾玉萍,黎大兵. 量子随机数高斯噪声信号发生器. 光学 精密工程, 2019, 27(7): 1492-1499

【4】陈玉芳,张昊,王敏,何剑飞. 曲面近场发光二极管阵列照度均匀性分析与设计. 激光与光电子学进展, 2020, 57(16): 161101--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF