首页 > 论文 > 光学 精密工程 > 24卷 > 10期(pp:2549-2556)

并行压缩成像系统的压缩域小目标检测

Small target detection in compressed domain for parallel compressive imaging system

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种适用于并行压缩成像系统的压缩域小目标检测算法,以便省去获得小目标位置信息时进行的图像重建环节,有效降低算法的复杂度。该方法通过并行压缩成像数学模型捕获背景以及待测图像压缩测量值,通过高斯混合模型进行压缩域背景建模,从而获得压缩域前景观测值。然后计算压缩域前景观测值与各压缩域目标位置模板的余弦相似度,根据局部阈值以及压缩域候选目标面积实现目标检测与定位。最后进行了仿真实验,分析了降采样率、测量次数、投影误差以及噪声等对目标检测效果的影响。结果表明: 增大降采样率及噪声均会降低检测效果; 测量次数对检测效果的贡献是有限的; 测量次数为2次或3次时,可以在保证检测效果的同时有效控制运行时间。此外,噪声对检测效果影响较大,因而需要严格控制系统噪声。该方法可以在不进行任何图像重建的情况下实现目标的实时检测。

Abstract

A small target detection algorithm working at a compressed domain was proposed for parallel compressive imaging systems to reduce the computational complexity by eliminating the process of image reconstruction. A mathematical model of the parallel compressive imaging system was used to capture measuring values of background and current frames. Then, the background measurements were updated according to a compressive sensing-mixture of Gaussians model (CS-MoG) to obtain the measurement values of the foreground. The cosine similarities between the measurements of current frame and the compressed target-location templates were calculated. And the local threshold and target area in the compressed domain were adopted to screen candidate targets. Finally, the effects of down-sampling rate, number of measurements, projection error and noise on the detection results were studied by simulation experiments. Experimental results show that large down-sampling rate and noise would decrease the detection performance, but the number of measurements to detection results has limited contribution. When 2 or 3 measurements are set, the operation time could be controlled while ensuring the detection performance. It suggests that the noise in the system should be controlled strictly because the noise effects the detection ability greatly. Furthermore, the proposed algorithm can achieve real-time target detection without any image reconstruction.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:TP391.4

DOI:10.3788/ope.20162410.2549

所属栏目:信息科学

基金项目:国家863高技术研究发展计划资助项目(No.2015AA7015091); 中国科学院上海技术物理研究所2015年所创新专项资助项目(No.CX-63)

收稿日期:2016-07-12

修改稿日期:2016-08-12

网络出版日期:--

作者单位    点击查看

王敏敏:中国科学院 上海技术物理研究所 中国科学院红外探测与成像技术重点实验室,上海 200083中国科学院大学,北京 100049
孙胜利:中国科学院 上海技术物理研究所 中国科学院红外探测与成像技术重点实验室,上海 200083

联系人作者:王敏敏(wangminmindata@163.com)

备注:王敏敏(1990-),女,浙江嘉兴人,博士研究生,2013年于山东大学获得学士学位,主要从事压缩感知成像、目标检测与跟踪方面的研究。

【1】DUARTE M F, DAVENPORT M A, TAKHAR D,et al.. Single-pixel imaging via compressive sampling[J].IEEE Signal Processing Magazine, 2008, 25(2), 83-91.

【2】BARANIUK R G.Compressive sensing[J]. IEEE Signal Processing Magazine, 2007, 24(4), 121-124.

【3】SHEPARD R H, FERNANDEZ-CULL C, RASKAR R,et al.. Optical design and characterization of an advanced computational imaging system[J]. Proc. SPIE, 2014, 9216, 92160A.

【4】KERVICHE R, ZHU N, ASHOK A.Information-optimal scalable compressive imaging system[C]. Computational Imaging and Sensing Conference (Optical Society of America), 2014.

【5】MAHALANOBIS A, SHILLING R, MURPHY R, et al.. Recent results of medium wave infrared compressive sensing [J].Applied Optics, 2014, 53(34), 8060-8070.

【6】WANG J, GUPTA M, SANKARANARAYANAN A C.LiSens - A scalable architecture for video compressive sensing [C].Proceedings of IEEE International Conference on Computational Photography, 2015,1-9.

【7】DUMAS J P, LODHI M A, BAJWA W U,et al.. Computational imaging with a highly parallel image-plane-coded architecture: challenges and solutions[J].Opt. Express, 2016, 24, 6145- 6155.

【8】CHEN Q, WANG Y. A small target detection method in infrared image sequences based on compressive sensing and background subtraction[C]. IEEE Int. Conf. Signal Process, Communication, Compute, 2013.

【9】修晓玉,刘玉喜,周国辉. 基于压缩感知的遥感图像小运动目标检测技术研究[J]. 计算机应用与软件,2014,31(5):219-222.
XIU X Y, LIU Y X, ZHOU G H. On detection technique of small moving objects in remote sensing image based on compressive sensing[J]. Computer Applications and Software, 2014,31(5):219-222.(in Chinese)

【10】QIN SH H, CHEN D Y, HUANG X, et al.. A compressive signal detection Scheme based on sparsity [J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014,7(2):121-130.

【11】LI L, LI H, LI T, et al.. Infrared small target detection in compressive domain [J]. Electron Letters, 2014, 50(7): 510-512.

【12】李安冬,林再平,安玮,等.基于自适应改进的压缩域红外弱小目标检测[J].中国激光,2015,42(10):221-228.
LI A D, LIN Z P, AN W, et al.. Infrared small target detection in compressive domain based on self-adaptive parameter configuration[J]. Chinese Journal of Lasers,2015,42(10):221-228. (in Chinese)

【13】穆治亚,魏仲慧,何昕,等. 采用稀疏表示的红外图像自适应杂波抑制[J]. 光学 精密工程,2013,21(7):1850-1857.
MU ZH Y, WEI ZH H, HE X, et al.. Adaptive clutter suppression of infrared images by using sparse representation [J]. Opt. Precision Eng., 2013,21(7):1850-1857. (in Chinese)

【14】何玉杰,李敏,张金利,等. 基于低秩三分解的红外图像杂波抑制[J]. 光学 精密工程,2015,23(7):2069-2078.
HE Y J, LI M, ZHANG J L, et al.. Clutter suppression of infrared image based on three-component low-rank matrix decomposition [J]. Opt. Precision Eng., 2015,23(7):2069-2078.(in Chinese)

【15】谢丽娟,黄建军,黄敬雄,等. 基于压缩量测的红外小目标检测[C]. 中国体视学学会.第十四届中国体视学与图像分析学术会.中国体视学学会:2015,5.
XIE L J, HUANG J J, HUANG J X, et al.. Infrared small target detection with compressive measurements[C]. Proceedings of the 14th China Conference of Stereology and Image Analysis.Chinese Society for Stereology,2015,5. (in Chinese)

【16】SHEN Y, HU W, YANG M R, et al..Real-time and robust compressive background subtraction for embedded camera networks [J]. IEEE Transactions on Mobile Computing, 2016,152,406-418.

【17】ZANG Q, KLETTE R. Parameter analysis for mixture of Gaussians[R]. CITR Technical Report 188, Auckland University, 2006.

【18】RIVEST J F, FORTIN R.Detection of dim targets in digital infrared imagery by morphological image processing[J].Optical Engineering, 1996,35:1886-1893.

【19】GAO C, MENG D, YANG Y, et al..Infrared patch-image model for small target detection in a single image[J].IEEE Transactions on Image Processing, 2013,22(12):4996-5009.

引用该论文

WANG Min-min,SUN Sheng-li. Small target detection in compressed domain for parallel compressive imaging system[J]. Optics and Precision Engineering, 2016, 24(10): 2549-2556

王敏敏,孙胜利. 并行压缩成像系统的压缩域小目标检测[J]. 光学 精密工程, 2016, 24(10): 2549-2556

被引情况

【1】雷 杰,于露露,罗晓红,李云松. 面向深空探测Bayer图像的高效编码. 光学 精密工程, 2019, 27(1): 191-200

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF