首页 > 论文 > 太赫兹科学与电子信息学报 > 14卷 > 2期(pp:180-185)

亚毫米波冰云成像仪通道选择

Channel selection of sub-millimeter ice-cloud sounder

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

依据冰云参数的多极化多散射大气亚毫米波辐射传输模型,分析了100 GHz~1 000 GHz频段内大气卷云吸收的特性,通过通道频率和带宽的不同设置,确定亚毫米波冰云成像探测仪包含15 个通道,频率覆盖范围为118 GHz~900 GHz,建立其与遥感器通道灵敏度、定标精确度、不同地理位置和海拔高度上对流层卷云中冰水总量、冰晶粒子尺寸、形状、方向性等反演参数的约束模型,为设计和研制用于测量冰云参数的星载亚毫米波成像仪提供理论分析和仿真验证。

Abstract

Based on the characteristics of multi-polar and multi-scattering for ice-cloud, the appropriate sub-millimeter atmospheric radiative transfer model is used to analyze the absorption and scattering of atmosphere from 100 GHz-1 000 GHz. The relationship between the sensitivity/calibration accuracy and channel specifications of sub-millimeter ice-cloud imager is analyzed, such as frequency, bandwidth, dual-band and polarization type settings, and then a 15-channel ice cloud imager which covers the frequencies from 118 GHz-900 GHz is proposed. The limitations of the parameter retrievals’ accuracy of ice-clouds distributed in different regions and at different heights in the troposphere are considered, because different geographic locations and altitudes can result in a significantly difference for total ice, ice particle size, shape and direction of ice-clouds. Finally, the specific indicators which will play a vital part in designing the sub-millimeter ice-imager onboard Chinese satellite are proposed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN62

DOI:10.11805/tkyda201602.0180

所属栏目:太赫兹科学技术

收稿日期:2015-04-20

修改稿日期:2015-05-20

网络出版日期:--

作者单位    点击查看

何杰颖:中国科学院 空间科学与应用研究中心微波遥感技术重点实验室,北京 100190
张升伟:中国科学院 空间科学与应用研究中心微波遥感技术重点实验室,北京 100190

联系人作者:何杰颖(hejieying@mirslab.cn)

备注:何杰颖(1984-),女,天津市人,在读博士研究生,主要研究方向为地基及星载微波辐射计设计与研制,星载和地基微波辐射计信息反演,大气探测与研究.

【1】EMDE C,BUEHLER S A,ERIKSSON P,et al. The effect of cirrus clouds on microwave limb radiances[J]. Atmospheric Research, 2004,72(1\2\3\4):383-401.

【2】BUEHLER S A,Jiménez C,EVANS K F,et al. A concept for a satellite mission to measure cloud ice water path,ice particle size,and cloud altitude[J]. Quarterly Journal of the Royal Meteorological Society, 2007,133(S2):109-128.

【3】韩丁,严卫,叶晶,等. 基于CloudSat 卫星资料分析东太平洋台风的云、降水和热力结构特征[J]. 大气科学, 2013,37(3): 691-704.
HAN Ding,YAN Wei,YE Jing,et al. Analyzing cloud,precipitation,and thermal structure characteristics of typhoons in eastern Pacific based on CloudSat satellite data[J]. Chinese Journal of Atmospheric Sciences, 2013,37(3): 691–704.

【4】MIAO J,JOHNSEN K P,BUEHLER S,et al. The potential of polarization measurements from space at mm and sub-mm wavelengths for determining cirrus cloud parameters[J]. Atmospheric Chemistry & Physics Discussions, 2003,3(1):39-48.

【5】ERIKSSON P,BUEHLER S. ARTS user guide[EB/OL]. (2012-06-14)[2015-04-20]. http://www.sat.ltu.se/arts/docs/.

【6】European Centre for Medium-Range Weather Forecasts. Browse reanalysis datasets[DB/OL]. [2015-05-20]. http:// www.ecmwf.int/en/research/climate-reanalysis/browse-reanalysis-datasets.

【7】MICHALAKES J,DUDHIA J,GILL D,et al. The weather research and forecast model: software architecture and performance[C]// 11th ECMWF Workshop on the Use of High Performance Computing In Meteorology. 2004:156-168.

【8】KUMAR R,NAJA M,PFISTER G G,et al. Simulations over south Asia using the Weather Research and Forecasting model with Chemistry(WRF-Chem):set-up and meteorological evaluation[J]. Geoscientific Model Development, 2012,5(2): 321-343.

【9】郭杨,卢乃锰,谷松岩. FY-3C 微波湿温探测仪118 GHz 和183 GHz 通道辐射特性仿真分析[J]. 红外与毫米波学报, 2014,33(5):481-491.
GUO Yang,LU Naimeng,GU Songyan. Simulate the radiometric characteristics of 118 GHz and 183 GHz channels for FY-3C new microwave radiometer sounder[J]. Journal of Infrared and Millimeter Wave, 2014,33(5):481-491.

【10】ZHANG Shengwei,LI J,JIANG J,et al. Microwave Humidity Sounder(MWHS) of Chinese meteorological satellite FY-3[C]// Proceedings of the Microwave Technology and Techniques Workshop-Enabling Future Space Systems. Noordwijk, Netherlands:[s.n.], 2006:632.

【11】GU S Y,GUO Yang,WANG Z,et al. Calibration analyses for sounding channels of MWHS onboard FY-3A[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012,50(12):4885-4891.

【12】DAVIS C P,EVANS K F,BUEHLER S A,et al. 3-D polarised simulations of space-borne passive mm/sub-mm midlatitude cirrus observations: a case study[J]. Atmospheric Chemistry & Physics, 2007,6(6):12701-12728.

【13】LIEBE H J. MPM-an atmospheric millimeter-wave propagation model[J]. International Journal of Infrared and Millimeter Waves, 1989,10(6):631-650.

【14】HEYMSFIELD A J,MCFARQUHAR G M. Mid-latitude and Tropical Cirrus Microphysical Properties[M]. Oxford,UK:Oxford University Press, 2002.

【15】EVANS K F,EVANS A H,NOLT I G,et al. The prospect for remote sensing of cirrus clouds with a submillimeter-wave spectrometer[J]. Journal of Applied Meteorology, 1999,38(5):514-525.

【16】GAO B C,GOETZ A F H,WISCOMBE W J. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band[J]. Geophysical Research Letters, 1993,20(4):301-304.

引用该论文

HE Jieying,ZHANG Shengwei. Channel selection of sub-millimeter ice-cloud sounder[J]. Thz, 2016, 14(2): 180-185

何杰颖,张升伟. 亚毫米波冰云成像仪通道选择[J]. 太赫兹科学与电子信息学报, 2016, 14(2): 180-185

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF