首页 > 论文 > 光电工程 > 43卷 > 11期(pp:62-68)

极限学习机在高光谱遥感图像分类中的应用

Research of Hyperspectral Remote Sensing Image Classification Based on Extreme Learning Machine

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对高光谱遥感图像的分类问题,本文引入极限学习的思想,提出了基于分层局部感受野的极限学习机的高光谱分类方法。该方法利用光谱特征的局部相关性,采用两层的分层结构提取高光谱图像中的抽象表示和不变特征,可以取得更好的分类性能。同时还分析了算法的不同参数对分类性能的影响。在两个广泛使用的真实高光谱数据集上进行实验,同当前一些典型的方法做比较,结果表明该方法具有更高的分类性能与较快的训练速度。

Abstract

In view of hyperspectral remote sensing image classification, this paper introduces Limit learning theory and proposes a novel classification approach for a hyperspectral image (HSI) using a hierarchical local receptive field (LRF) based extreme learning machine (ELM). Considering the local correlations of spectral features, hierarchical architectures with two layers can potentially extract abstract representation and invariant features for better classification performance. Simultaneously, the influence of different parameters of the algorithm on classification performance is also analyzed. Experimental results on two widely used real hyperspectral data sets confirm that the comparison with the current some advanced methods, and the proposed HSI classification approach has faster training speed and better classification performance.

投稿润色
补充资料

中图分类号:TP751

DOI:10.3969/j.issn.1003-501x.2016.11.010

所属栏目:图像与信号处理

收稿日期:2016-04-22

修改稿日期:2016-07-04

网络出版日期:--

作者单位    点击查看

李 铁:辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
张新君:大连理工大学 计算机科学与技术学院,辽宁 大连 116024

联系人作者:李铁(lthero@163.com)

备注:李铁(1978-),男(汉族),辽宁阜新人。讲师,博士,主要研究工作是遥感影像、模式识别。

【1】李吉明,贾森,彭艳斌. 基于光谱特征和纹理特征协同学习的高光谱图像数据分类 [J]. 光电工程,2012,39(11):88-94.
LI Jiming,JIA Sen,PENG Yanbin. Hyperspectral Data Classification with Spectral and Texture Features by Co-training Algorithm [J]. Opto-Electronic Engineering,2012,39(11):88-94.

【2】KANG Xudong,LI Shutao,FANG Leyuan,et al. Intrinsic image decomposition for feature extraction of hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing(S0196-2892),2015,53(4):2241–2253.

【3】Ghamisi P,Benediktsson J A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization [J]. IEEE Geoscience and Remote Sensing Letters(S1545-598X),2015,12(2):309–313.

【4】ZHOU Yicong,PENG Jiangtao,CHEN C L. Philip. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing(S0196-2892),2015,53(2):1082–1095.

【5】KANG Xudong,LI Shutao,FANG Leyuan,et al. Extended random walker-based classification of hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing(S0196-2892),2015,53(1):144–153.

【6】Romero A,Radeva P,Gatta C. Meta-parameter free unsupervised sparse feature learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828),2015,37(8):1716–1722.

【7】Bazi Yakoub,Naif Alajlan,Farid Melgani. Differential evolution extreme learning machine for the classification of hyperspectral images [J]. IEEE Geoscience and Remote Sensing Letters(S1545-598X),2014,11(6):1066–1070.

【8】ZHANG Lefei,ZHANG Qian,ZHANG Liangpei,et al. Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding [J]. Pattern Recognition(S0031-3203),2015,48(10):3102–3112.

【9】CHEN Chen,LI Wei,SU Hongjun,et al. Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine [J]. Remote Sensing(S2072-4292),2014,6(6):5795–5814.

【10】CHEN Yushi,ZHAO Xing,JIA Xiuping. Spectral-spatial classification of hyperspectral data based on deep belief network [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing(S1939-1404),2015,8(6): 2381–2392.

【11】YUE Jun,ZHAO Wenzhi,MAO Shanjun,et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks [J]. Remote Sensing Letters(S2150-704X),2015,6(6):468–477.

【12】Soltani-Farani A,Rabiee H R,Hosseini S A. Spatial-aware dictionary learning for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing(S0196-2892),2015,53(1):527–541.

引用该论文

LI Tie,ZHANG Xinjun. Research of Hyperspectral Remote Sensing Image Classification Based on Extreme Learning Machine[J]. Opto-Electronic Engineering, 2016, 43(11): 62-68

李 铁,张新君. 极限学习机在高光谱遥感图像分类中的应用[J]. 光电工程, 2016, 43(11): 62-68

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF