首页 > 论文 > 光谱学与光谱分析 > 36卷 > 3期(pp:823-826)

微波液相放电乙醇制氢发射光谱研究

Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

氢能作为一种高热值、 无污染的清洁能源日渐受到国内外专家学者的追捧。 微波液相放电技术在醇类中制氢具有光明的研究前景, 为氢能的研究开发开辟了一条新的途径。 通过对乙醇制氢发射光谱分析, 有利于分析微波液相放电醇类制氢机理的探讨, 为进一步改进微波液相放电制氢技术奠定基础。 本文采用2.45 GHz频率微波在液相醇类中放电实现了微波液相等离子体制氢, 并借助发射光谱仪对微波液相放电乙醇制氢光谱特性进行了研究。 研究结果显示: 微波液相放电乙醇制氢过程中, 能产生大量的H, O, OH, CH, C2等活性粒子; 乙醇放电光谱中OH自由基、 H自由基和O自由基的光谱强度要远大于纯水中OH自由基、 H自由基和O自由基的光谱强度; 高能粒子打开水分子中的O—H键, 脱氢制氢的过程较乙醇分子难度要大, 因此在微波乙醇放电制氢过程中, 氢气的来源主要是乙醇分子的脱氢重组, 水分解产氢的贡献度较低; 在外界压力与温度一定的条件下, OH, H, O自由基的发射光谱强度随着功率的增加显著增强, 而CH和C2活性粒子发射光谱强度则出现减弱趋势, 这表明较大的微波功率不仅使产生的高能粒子的能量增加, 同时高能粒子的密度也有所增加, 导致较多的CH和C2基团被充分碰撞打开。

Abstract

Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O—H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O461.2

DOI:10.3964/j.issn.1000-0593(2016)03-0823-04

基金项目:国家自然科学基金项目(10875019, 41005079)和中央高校基本科研业务费项目资助

收稿日期:2014-12-03

修改稿日期:2015-04-16

网络出版日期:--

作者单位    点击查看

孙 冰:大连海事大学环境科学与工程学院, 辽宁 大连 116026
王 波:大连海事大学环境科学与工程学院, 辽宁 大连 116026
朱小梅:大连海事大学环境科学与工程学院, 辽宁 大连 116026
严志宇:大连海事大学环境科学与工程学院, 辽宁 大连 116026
刘永军:大连海事大学环境科学与工程学院, 辽宁 大连 116026
刘 慧:大连海事大学环境科学与工程学院, 辽宁 大连 116026

联系人作者:孙冰(sunb88@dlmu.edu.cn)

备注:孙 冰, 1961年生, 大连海事大学环境科学与工程学院教授

【1】Chin Y H, Dagle R, Hu J L, et al. Catalysis Today, 2002, 77(1-2): 79.

【2】Homy C, Kiwi-Minsker L, Renken A. Chemical Engineering Journal, 2004, 101(1-3): 3.

【3】Yu J, Qi L, Jaroniec M. Journal of Physical Chemistry C, 2010, 114(30): 13118.

【4】Lü K, Zuo H, Sun J, et al. Journal of Hazardous Materials, 2009, 161: 396.

【5】Taguchi F, Chang J D, Tadiguchi S, et al. Journal of Fermentation and Bioengineering, 1992, 73(3): 244.

【6】Guo W Q, Ren N Q, Wang X J, et al. International Journal of Hydrogen Energy, 2008, 33(19): 4981.

【7】Rincon R, Jimenez M, Munoz J, et al. Plasma Chemistry and Plasma Processing, 2014, 34(1): 145.

【8】Song L J, Li X H. Journal of Central South University, 2013, 20(12): 3764.

【9】Reddy E L, Biju V M, Subrahmanyam C. Applied Energy, 2012, 95(7): 87.

【10】Putra A E E, Nomura S, Mukasa S, et al. International Journal of Hydrogen Energy, 2012, 37(21): 16000.

【11】Henriques J, Bundaleska N, Tatarova E, et al. International Journal of Hydrogen Energy, 2011, 36(1): 345.

【12】WANG Bo, SUN Bing, ZHU Xiao-mei, et al(王 波, 孙 冰, 朱小梅, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(5): 1182.

【13】Wang B, Sun B, Zhu X M, et al. Contributions to Plasma Physics, 2013, 53(9): 697.

【14】Wang B, Sun B, Zhu X M, et al. Journal of Physics: Conference Series, 2013, 418(1): 012099.

【15】Sugiarto A T, Ito S, Ohshima T, et al. Journal of Electrostatics, 2003, 58(1-2): 135.

【16】Sun B, Sato M, Clements J S, et al. Journal of Electrostatics, 1997, 39(3): 189.

【17】Sun B, Kunitomo S, Igarashi C, et al. Physics D: Applied Physics, 2006, 39(17): 3814.

【18】http://www.me.berkeley.edu·g-1ri_mech/version30/files30/grimech30.dat

引用该论文

SUN Bing,WANG Bo,ZHU Xiao-mei,YAN Zhi-yu,LIU Yong-jun,LIU Hui. Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 823-826

孙 冰,王 波,朱小梅,严志宇,刘永军,刘 慧. 微波液相放电乙醇制氢发射光谱研究[J]. 光谱学与光谱分析, 2016, 36(3): 823-826

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF