首页 > 论文 > 中国激光 > 43卷 > 12期(pp:1200001--1)

基于光学系统的血管内高集成多模态成像技术

Multimodality Intravascular Imaging Technologies Based on Optical System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

易损斑块是引起心肌梗塞的主要原因。准确诊断易损斑块可以帮助医护人员优化心血管疾病治疗方案,减小心肌梗塞致死率。血管内多模态成像技术通过结合两种或两种以上成像模态的优势,可以对动脉粥样硬化斑块进行定性定量分析,提高识别易损斑块的准确性。综述了目前国际上最先进的五种多模态血管内成像技术,详细介绍了血管内超声-光学相干层析、光学相干层析-荧光、光学相干层析-光谱仪、血管内光声-超声和光学相干层析-弹性多模态成像技术的发展过程和技术难点,并展望了未来研究趋势。

Abstract

The majority of acute coronary events are caused by ruptures of vulnerable atherosclerotic plaques. Accurate identification of vulnerable plaques holds great promise in optimizing treatment plans and preventing cardiac deaths in future. However, clinically available imaging technologies are not sufficient to accurately diagnose vulnerable plaques. By the combined use of complementary imaging technologies, multimodality intravascular imaging technologies can image and quantify atherosclerotic plaques, and accurately identify vulnerable plaques. In this paper, we review the development process and the technical difficulty of multimodality intravascular imaging technologies, including intravascular ultrasound-optical coherence tomography, optical coherence tomography imaging-fluorescence, optical coherence tomography-spectrometer, intravascular photoacoustic-ultrasound and optical coherence tomography-optical coherence elastography multimodality imaging technologies. The paper will conclude with future directions of multimodality intravascular imaging technologies.

投稿润色
补充资料

中图分类号:N249

DOI:10.3788/cjl201643.1200001

所属栏目:综述

收稿日期:2016-05-30

修改稿日期:2016-09-26

网络出版日期:--

作者单位    点击查看

李佳纹:阿德莱德大学纳米尺度生物光子学研究中心, 阿德莱德, 南澳大利亚 5005, 澳大利亚
陈忠平:加利福尼亚大学欧文分校贝克曼激光研究所, 欧文, 加利福尼亚州 92617, 美国

联系人作者:李佳纹(Jiawen.li01@adelaide.edu.au)

备注:李佳纹(1988—),女,博士,讲师,主要从事生物医学光子学方面的研究。

【1】Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options[J]. Nature Medicine, 2011, 17(11): 1410-1422.

【2】Virmani R, Kolodgie F D, Burke A P, et al. Atherosclerotic plaque progression and vulnerability to rupture angiogenesis as a source of intraplaque hemorrhage[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25(10): 2054-2061.

【3】Narula J, Strauss H W. Imaging of unstable atherosclerotic lesions[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32(1): 1-5.

【4】Narula J, Strauss H W. The popcorn plaques[J]. Nature Medicine, 2007, 13(5): 532-534.

【5】Virmani R, Burke A P, Farb A, et al. Pathology of the vulnerable plaque[J]. Journal of the American College of Cardiology, 2006, 47(8s): C13-C18.

【6】Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy[J]. Journal of the American College of Cardiology, 2007, 50(10): 933-939.

【7】Tearney G J, Jang I K, Bouma B E. Optical coherence tomography for imaging the vulnerable plaque[J]. Journal of Biomedical Optics, 2006, 11(2): 021002.

【8】Low A F, Tearney G J, Bouma B E, et al. Technology insight: optical coherence tomography—current status and future development[J]. Nature Clinical Practice Cardiovascular Medicine, 2006, 3(3): 154-162.

【9】Fujimoto J G, Schmitt J M, Swanson E A, et al. The development of OCT[M]. //Jang I K. Cardiovascular OCT imaging. London: Springer, 2015: 1-21.

【10】Kawasaki M, Bouma B E, Bressner J, et al. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques[J]. Journal of the American College of Cardiology, 2006, 48(1): 81-88.

【11】Rieber J, Meissner O, Babaryka G, et al. Diagnostic accuracy of optical coherence tomography and intravascular ultrasound for the detection and characterization of atherosclerotic plaque composition in ex-vivo coronary specimens: a comparison with histology[J]. Coronary Artery Disease, 2006, 17(5): 425-430.

【12】Sawada T, Shite J, Garcia-Garcia H M, et al. Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma[J]. European Heart Journal, 2008, 29(9): 1136-1146.

【13】Fujii K, Hao H, Shibuya M, et al. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study[J]. JACC: Cardiovascular Imaging, 2015, 8(4): 451-460.

【14】Rber L, Heo J H, Radu M D, et al. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques[J]. EuroIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2012, 8(1): 98-108.

【15】Yin J C, Yang H C, Li X, et al. Integrated intravascular optical coherence tomography ultrasound imaging system[J]. Journal of Biomedical Optics, 2010, 15(1): 010512.

【16】Li X, Yin J C, Hu C H, et al. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe[J]. Applied Physics Letters, 2010, 97(13): 133702.

【17】Yang H C, Yin J C, Hu C H, et al. A dual-modality probe utilizing intravascular ultrasound and optical coherence tomography for intravascular imaging applications[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57(12): 2839-2843.

【18】Li J W, Ma T, Mohar D, et al. Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization[C]. SPIE, 2014, 8926: 892635.

【19】Wang P, Ma T, Slipchenko M N, et al. High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2 kHz barium nitrite Raman laser[J]. Scientific Reports, 2014, 4: 6889.

【20】Piao Z L, Ma T, Li J W, et al. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm[J]. Applied Physics Letters, 2015, 107(8): 083701.

【21】Wei W, Li X, Zhou Q F, et al. Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging[J]. Journal of Biomedical Optics, 2011, 16(10): 106001.

【22】Li X, Wei W, Zhou Q F, et al. Intravascular photoacoustic imaging at 35 and 80 MHz[J]. Journal of Biomedical Optics, 2012, 17(10): 106005.

【23】Moreno P R, Lodder R A, Purushothaman K R, et al. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy[J]. Circulation, 2002, 105(8): 923-927.

【24】Wang J, Geng Y J, Guo B J, et al. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques[J]. Journal of the American College of Cardiology, 2002, 39(8): 1305-1313.

【25】Jansen K, van der Steen A F, van Beusekom H M, et al. Intravascular photoacoustic imaging of human coronary atherosclerosis[J]. Optics Letters, 2011, 36(5): 597-599.

【26】Wang B, Su J L, Amirian J, et al. Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging[J]. Optics Express, 2010, 18(5): 4889-4897.

【27】Zhang J, Xing D. Intravascular photoacoustic detection of vulnerable plaque based on constituent selected imaging[J]. Journal of Physics: Conference Series, 2011, 277(1): 012049.

【28】Yoo H K, Kim J W, Shishkov M, et al. Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo[J]. Nature Medicine, 2011, 17(12): 1680-1684.

【29】Liang S S, Saidi A, Jing J, et al. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner[J]. Journal of Biomedical Optics, 2012, 17(7): 070501.

【30】Liang S S, Ma T, Jing J, et al. Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging[J]. Optics Letters, 2014, 39(23): 6652-6655.

【31】Nadkarni S K. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture[J]. Journal of Biomedical Optics, 2013, 18(12): 121507.

【32】Waxman S, Ishibashi F, Muller J E. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events[J]. Circulation, 2006, 114(22): 2390-2411.

【33】Alfonso F, Dutary J, Paulo M, et al. Combined use of optical coherence tomography and intravascular ultrasound imaging in patients undergoing coronary interventions for stent thrombosis[J]. Heart, 2012, 98(16): 1213-1220.

【34】Yin J C, Li X, Jing J, et al. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging[J]. Journal of Biomedical Optics, 2011, 16(6): 060505.

【35】Li J W, Ma T, Jing J, et al. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display[J]. Journal of Biomedical Optics, 2013, 18(10): 100502.

【36】Li J W, Yin J C, Li X, et al. Miniature integrated optical coherence tomography (OCT)-ultrasound (US) probe for intravascular imaging[C]. SPIE, 2012, 8207: 82073X.

【37】Li J W, Chen Z P. Integrated intravascular ultrasound and optical coherence tomography technology: a promising tool to identify vulnerable plaques[J]. Journal of Biomedical Photonics & Engineering, 2016, 1(4): 209-224.

【38】Li J W, Li X, Mohar D, et al. Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis[J]. JACC: Cardiovascular Imaging, 2014, 7(1): 101-103.

【39】Li X, Li J W, Jing J, et al. Integrated IVUS-OCT imaging for atherosclerotic plaque characterization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 7100108.

【40】Li J W, Ma T, Mohar D, et al. Ultrafast optical-ultrasonic system and miniaturized catheter for imaging and characterizing atherosclerotic plaques in vivo[J]. Scientific Reports, 2015, 5: 18406.

【41】Ohtsuki K, Hayase M, Akashi K, et al. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study[J]. Circulation, 2001, 104(2): 203-208.

【42】Kolodgie F D, Petrov A, Virmani R, et al. Targeting of apoptotic macrophages and experimental atheroma with radiolabeled annexin V: a technique with potential for noninvasive imaging of vulnerable plaque[J]. Circulation, 2003, 108(25): 3134-3139.

【43】Sanz J, Fayad Z A. Imaging of atherosclerotic cardiovascular disease[J]. Nature, 2008, 451(7181): 953-957.

【44】Qureshi A, Gurbuz Y, Niazi J H. Biosensors for cardiac biomarkers detection: a review[J]. Sensors and Actuators B: Chemical, 2012, 171: 62-76.

【45】Schmitt J M, Adler D C, Xu C Y. Future development[M]. //Jang I K. Cardiovascular OCT imaging. London: Springer, 2015: 203-216.

【46】Ughi G J, Wang H, Gerbaud E, et al. Clinical characterization of coronary atherosclerosis with dual-modality OCT and near-infrared autofluorescence imaging[J/OL]. JACC: Cardiovascular Imaging, 2016[2016-04-21]. http://www.sciencedirect.com/science/article/pii/S1936878X16000383.

【47】Diamond K R, Patterson M S, Farrell T J. Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber[J]. Applied Optics, 2003, 42(13): 2436-2442.

【48】Kim A, Khurana M, Moriyama Y, et al. Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements[J]. Journal of Biomedical Optics, 2010, 15(6): 067006.

【49】Fard A M, Vacas-Jacques P, Hamidi E, et al. Optical coherence tomography-near infrared spectroscopy system and catheter for intravascular imaging[J]. Optics Express, 2013, 21(25): 30849-30858.

【50】Caplan J D, Waxman S, Nesto R W, et al. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques[J]. Journal of the American College of Cardiology, 2006, 47(8s1): C92-C96.

【51】Schmitt M, Popp J. Raman spectroscopy at the beginning of the twenty-first century[J]. Journal of Raman Spectroscopy, 2006, 37(1-3): 20-28.

【52】Latka I, Dochow S, Krafft C, et al. Fiber optic probes for linear and nonlinear Raman applications—current trends and future development[J]. Laser & Photonics Reviews, 2013, 7(5): 698-731.

【53】Matthus C, Dochow S, Bergner G, et al. In vivo characterization of atherosclerotic plaque depositions by Raman-probe spectroscopy and in vitro coherent anti-Stokes Raman scattering microscopic imaging on a rabbit model[J]. Analytical Chemistry, 2012, 84(18): 7845-7851.

【54】Wang H W, Langohr I M, Sturek M, et al. Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29(9): 1342-1348.

【55】Wang H W, Le T T, Cheng J X. Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope[J]. Optics Communications, 2008, 281(7): 1813-1822.

【56】Balu M, Liu G J, Chen Z P, et al. Fiber delivered probe for efficient CARS imaging of tissues[J]. Optics Express, 2010, 18(3): 2380-2388.

【57】Tam A C. Applications of photoacoustic sensing techniques[J]. Reviews of Modern Physics, 1986, 58(2): 381-431.

【58】Allen T J, Beard P C. Photoacoustic characterisation of vascular tissue at NIR wavelengths[C]. SPIE, 2009, 7177: 71770A.

【59】Jansen K, Wu M, van der Steen A F W, et al. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands[J]. Photoacoustics, 2014, 2(1): 12-20.

【60】Wang B, Karpiouk A, Yeager D, et al. In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis[J]. Ultrasound in Medicine & Biology, 2012, 38(12): 2098-2103.

【61】Bai X S, Gong X J, Hau W, et al. Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter[J]. PLoS ONE, 2014, 9(3): e92463.

【62】Li Y, Gong X J, Liu C B, et al. High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter[J]. Journal of Biomedical Optics, 2015, 20(6): 065006.

【63】Jansen K, van Soest G, van der Steen A F W. Intravascular photoacoustic imaging: a new tool for vulnerable plaque identification[J]. Ultrasound in Medicine & Biology, 2014, 40(6): 1037-1048.

【64】Zhang J, Yang S H, Ji X R, et al. Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation[J]. Journal of the American College of Cardiology, 2014, 64(4): 385-390.

【65】Sethuraman S, Amirian J H, Litovsky S H, et al. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques[J]. Optics Express, 2008, 16(5): 3362-3367.

【66】Wang P, Wang P, Wang H W, et al. Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration[J]. Journal of Biomedical Optics, 2012, 17(9): 096010.

【67】de Korte C L, Sierevogel M J, Mastik F, et al. Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study[J]. Circulation, 2002, 105(14): 1627-1630.

【68】de Korte C L, van der Steen A F W. Intravascular ultrasound elastography: an overview[J]. Ultrasonics, 2002, 40(1-8): 859-865.

【69】de Korte Chris L, van der Steen A F W, Céspedes E I, et al. Characterization of plaque components and vulnerability with intravascular ultrasound elastography[J]. Physics in Medicine and Biology, 2000, 45(6): 1465.

【70】de Korte C L, Mastik F, Schaar J A, et al. Intravascular elastography: from idea to clinical tool[M]. //Saijo Y, van der Steen A F W. Vascular ultrasound. Cham: Springer International Publishing AG, 2003: 91-105.

【71】Nadkarni S K, Bouma B E, Helg T, et al. Characterization of atherosclerotic plaques by laser speckle imaging[J]. Circulation, 2005, 112(6): 885-892.

【72】Hajjarian Z, Xi J Q, Jaffer F A, et al. Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall[J]. Journal of Biomedical Optics, 2011, 16(2): 026005.

【73】Qi W J, Li R, Ma T, et al. Resonant acoustic radiation force optical coherence elastography[J]. Applied Physics Letters, 2013, 103(10): 103704.

【74】Rogowska J, Patel N A, Fujimoto J G, et al. Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues[J]. Heart, 2004, 90(5): 556-562.

【75】Qi W J, Chen R M, Chou L, et al. Phase-resolved acoustic radiation force optical coherence elastography[J]. Journal of Biomedical Optics, 2012, 17(11): 110505.

【76】Qi W J, Li Rui, Ma T, et al. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer[J]. Applied Physics Letters, 2014, 104(12): 123702.

【77】Schmitt J M. OCT elastography: imaging microscopic deformation and strain of tissue[J]. Optics Express, 1998, 3(6): 199-211.

【78】Ford M R, Dupps W J Jr, Rollins A M, et al. Method for optical coherence elastography of the cornea[J]. Journal of Biomedical Optics, 2011, 16(1): 016005.

【79】Kennedy B F, Liang X, Adie S G, et al. In vivo three-dimensional optical coherence elastography[J]. Optics Express, 2011, 19(7): 6623-6634.

【80】Kennedy B F, McLaughlin R A, Kennedy K M, et al. Investigation of optical coherence microelastography as a method to visualize cancers in human breast tissue[J]. Cancer Research, 2015, 75(16): 3236-3245.

【81】van Soest G, Mastik F, de Jong N, et al. Robust intravascular optical coherence elastography by line correlations[J]. Physics in Medicine and Biology, 2007, 52(9): 2445-2458.

【82】Zhu J, Qu Y Q, Ma T, et al. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method[J]. Optics Letters, 2015, 40(9): 2099-2102.

【83】Han Z L, Li J S, Singh M, et al. Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography[J]. Applied Physics Letters, 2015, 106(23): 233702.

【84】Dong L, Wijesinghe P, Dantuono J T, et al. Quantitative compression optical coherence elastography as an inverse elasticity problem[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(3): 277-287.

【85】Mc Cullough P A. Contrast-induced acute kidney injury[J]. Journal of the American College of Cardiology, 2008, 51(15): 1419-1428.

【86】Li J W, Minami H, Steward E, et al. Optimal flushing agents for integrated optical and acoustic imaging systems[J]. Journal of Biomedical Optics, 2015, 20(5): 056005.

【87】Hoang K C, Edris A, Su J P, et al. Use of an oxygen-carrying blood substitute to improve intravascular optical coherence tomography imaging[J]. Journal of Biomedical Optics, 2009, 14(3): 034028.

【88】Kataiwa H, Tanaka A, Kitabata H, et al. Head to head comparison between the conventional balloon occlusion method and the non-occlusion method for optical coherence tomography[J]. International Journal of Cardiology, 2011, 146(2): 186-190.

【89】Ozaki Y, Kitabata H, Tsujioka H, et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography[J]. Circulation Journal, 2012, 76(4): 922-927.

【90】Wang B, Karpiouk A, Yeager D, et al. Intravascular photoacoustic imaging of lipid in atherosclerotic plaques in the presence of luminal blood[J]. Optics Letters, 2012, 37(7): 1244-1246.

【91】Calvert P A, Obaid D R, O′Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in vulnerable atherosclerosis) study[J]. JACC: Cardiovascular Imaging, 2011, 4(8): 894-901.

【92】Stone G W, Maehara A, Lansky A J, et al. A prospective natural-history study of coronary atherosclerosis[J]. The New England Journal of Medicine, 2011, 364: 226-235.

【93】Brener S J, Mintz G S, Cristea E, et al. Characteristics and clinical significance of angiographically mild lesions in acute coronary syndromes[J]. JACC: Cardiovascular Imaging, 2012, 5(3s): 86-94.

【94】McPherson J A, Maehara A, Weisz G, et al. Residual plaque burden in patients with acute coronary syndromes after successful percutaneous coronary intervention[J]. JACC: Cardiovascular Imaging, 2012, 5(3s): 76-85.

【95】Stone G W, Maehara A, Mintz G S. The reality of vulnerable plaque detection[J]. JACC: Cardiovascular Imaging, 2011, 4(8): 902-904.

【96】Braunwald E. Epilogue: what do clinicians expect from imagers?[J]. Journal of the American College of Cardiology, 2006, 47(8s): C101-C103.

【97】Narula J, Dilsizian V. From better understood pathogenesis to superior molecular imaging, and back[J]. JACC: Cardiovascular Imaging, 2008, 1(3): 406-409.

【98】Puri R, Worthley M I, Nicholls S J. Intravascular imaging of vulnerable coronary plaque: current and future concepts[J]. Nature Reviews Cardiology, 2011, 8(3): 131-139.

【99】Kusters D H M, Tegtmeier J, Schurgers L J, et al. Molecular imaging to identify the vulnerable plaque—from basic research to clinical practice[J]. Molecular Imaging and Biology, 2012, 14(5): 523-533.

【100】胡盛寿. 中国心血管病报告2014[R/OL]. 北京: 中国大百科全书出版社, 2015: 11[2016-04-22]. http://www.menzhen.org/View/Topic.aspx?Idx=08afd623427547d1b6a1f67d1d3e1566.

【101】霍勇, 汪闻亮, 金瑜冰. 大数据时代的机遇与挑战——2013冠心病介入治疗数据解读[J]. 门诊, 2014: 05. [2016-05-30]. menzhen.org/view/Topic.aspx?Idx=08afd623427547d1b6a1f67d1d3e1566.

【102】Mathews M S, Su J P, Heidari E, et al. Neuroendovascular optical coherence tomography imaging and histological analysis[J]. Neurosurgery, 2011, 69(2): 430-439.

引用该论文

Li Jiawen,Chen Zhongping. Multimodality Intravascular Imaging Technologies Based on Optical System[J]. Chinese Journal of Lasers, 2016, 43(12): 1200001

李佳纹,陈忠平. 基于光学系统的血管内高集成多模态成像技术[J]. 中国激光, 2016, 43(12): 1200001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF