首页 > 论文 > 激光与光电子学进展 > 53卷 > 12期(pp:121401--1)

超连续谱激光对生物荧光激发效应的影响

Influence of Supercontinuum Laser on Bioluminescence Imaging Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对荧光成像仪氙灯光源寿命短, 激发能力弱的现状, 提出了运用超连续谱激光(SCL)作为荧光激发光源的生物荧光成像技术; 进行了荧光标准测试卡在两种光源激发下的荧光对比实验和不同SCL激发功率谱密度下的分析实验; 通过线性拟合和外推的方法, 对比分析了在相同曝光时间和功率下, 两种光源的荧光激发能力; 最后, 通过对荧光基团在两种光源下的平均、最大光子密度流信息进行分析, 进一步验证了实验结论: 在生物荧光成像技术中, 在相同激发功率谱密度下, 相同的曝光时间内, SCL光源所激发的荧光强度是氙灯光源的2倍, 且SCL具有更长的光源寿命和连续可调的光源参数, 可满足荧光成像研究过程中对光源参数的不同需求, 所做工作有利于解决荧光成像技术的光源瓶颈。

Abstract

For the problem of weak exciting ability and short source life of xenon lamp in fluorescence imaging system, we proposed a new fluorescence excitation method that uses supercontinuum laser (SCL) to be the excitation source in bioluminescence imaging technology. The fluorescence imaging experiments of the fluorescence imaging test card by the two excitation sources were carried out and then the experiments at different SCL excitation power spectrum density were also completed. By the method of linear fitting and extrapolation, we analyzed the fluorescence excitation ability of the two sources at the same exposure time and power spectrum density. We obtain a conclusion that the fluorescence excitation intensity of SCL source is nearly twice of that of xenon lamp. Finally, through the analysis of the average and maximum photon density of the test perssad under two sources, the experiment results are proved again. The work is conducive to solve the problem of the source life and the fluorescence excitation ability of the light source in fluorescence imaging system.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/lop53.121401

所属栏目:激光器与激光光学

基金项目:中国工程物理研究院双百人才基金(ZX08002)

收稿日期:2016-05-30

修改稿日期:2016-09-26

网络出版日期:2016-11-22

作者单位    点击查看

罗韵:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
梁小宝:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
李超:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
赵磊:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
邓颖:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
徐振源:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
封建胜:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
黎玥:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
张昊宇:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
王建军:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
景峰:中国工程物理研究院激光聚变研究中心, 四川 成都 630021
朱启华:中国工程物理研究院激光聚变研究中心, 四川 成都 630021等离子体物理重点实验室, 四川 绵阳 621900上海交通大学IFSA协同创新中心, 上海 200240

联系人作者:罗韵(luoyun_scu@126.com)

备注:罗韵(1988—), 男, 硕士, 研究实习员, 主要从事新型光纤激光技术及应用方面的研究。

【1】Choy G, O′connor S, Diehn F E, et al. Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging[J]. BioTechniques, 2003, 35(5): 1022-1030.

【2】Kiessling F, Pichler B J. Small animal imaging: Basics and practical guide[M]. Germany: Springer Science+Business Media, 2011.

【3】Pomper M G, Lee J S. Small animal imaging in drug development[J]. Current Pharmaceutical Design, 2005, 11(25): 3247-3272.

【4】Guo Hongbo, He Xiaowei, Hou Yuqing, et al. Fluorescence molecular tomography based on nonconvex sparse regularization[J]. Acta Optica Sinica, 2015, 35(7): 0717001.
郭红波, 贺小伟, 侯榆青, 等. 基于非凸稀疏正则的荧光分子断层成像[J]. 光学学报, 2015, 35(7): 0717001.

【5】Li Zuanfang, Huang Zufang, Chen Rong, et al. Two-photon fluorescence imaging of thyroid tissue[J]. Chinese J Lasers, 2009, 36(3): 765-768.
李钻芳, 黄祖芳, 陈 荣, 等. 甲状腺组织的双光子荧光成像[J]. 中国激光, 2009, 36(3): 765-768.

【6】Wang Jincheng, Kuang Cuifang, Wang Yifan, et al. Multispectral fluorescence microscopic imaging based on compressive sensing[J]. Chinese J Lasers, 2013, (12): 1204003.
王金成, 匡翠方, 王轶凡, 等. 基于压缩感知的荧光显微多光谱成像[J]. 中国激光, 2013, 40(12): 1204003.

【7】Chang Jian, Zhang Yunhai, Zhang Xin, et al. Application of laser scanning confocal technology in near infrared fluorescence imaging[J]. Laser & Optoelectronics Progress, 2014, 51(11): 111702.
昌 剑, 张运海, 张 欣, 等. 激光扫描共聚焦技术在近红外荧光成像中的应用[J]. 激光与光电子学进展, 2014, 51(11): 111702.

【8】Wang Mao, Li Chunyan, Sun Yunfei, et al. Research of near-infrared small living animal fluoresence imaging system[J]. Acta Optica Sinica, 2013 (6): 0617003.
王 懋, 李春炎, 孙云飞, 等. 近红外小动物活体荧光成像系统的研制[J]. 光学学报, 2013, 33(6): 0617003.

【9】Leavesley S, Jiang Y, Patsekin V, et al. An excitation wavelength-scanning spectral imaging system for preclinical imaging[J]. Review of Scientific Instruments, 2008, 79(2): 023707.

【10】Levenson R M, Lynch D T, Kobayashi H, et al. Multiplexing with multispectral imaging: From mice to microscopy[J]. ILAR Journal, 2008, 49(1): 78-88.

【11】Levenson R M, Mansfield J R. Multispectral imaging in biology and medicine: Slices of life[J]. Cytometry, Part A, 2006, 69(8): 748-758.

【12】Mayes P A, Dicker D T, Liu Y Y, et al. Noninvasive vascular imaging in fluorescent tumors using multispectral unmixing[J]. BioTechniques, 2008, 45(4): 459-464.

【13】Yang M, Jiang P, Hoffman R M. Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time[J]. Cancer Research, 2007, 67(11): 5195-5200.

【14】Yang M, Jiang P, Hoffman R M. Whole-body subcellular multicolor imaging[C]. SPIE, 2007, 6449: 64490V.

【15】Weissleder R. Scaling down imaging molecular mapping of cancer in mice[J]. Nature Reviews Cancer, 2002, 2(1): 11-18.

【16】Hoffman R M. Imaging in mice with fluorescent proteins: From macro to subcellular[J]. Sensors, 2008, 8(2): 1157-1173.

【17】Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins[J]. Nature Methods, 2005, 2(12): 905-909.

【18】Shcherbo D, Merzlyak E M, Chepurnykh T V, et al. Bright far-red fluorescent protein for whole-body imaging[J]. Nature Methods, 2007, 4(9): 741-746.

【19】Chen Y P, Xiong T X, Yu L, et al. Whole-body fluorescent optical imaging based on power light emitting diode[C]. Engineering in Medicine and Biology 27th Annual Conference, 2005: 1442-1445.

【20】Yang M, Luiken G, Baranov E, et al. Facile whole-body imaging of internal fluorescent tumors in mice with an LED flashlight[J]. BioTechniques, 2005, 39(2): 170-172.

【21】Shcherbo D, Murphy C S, Ermakova G V, et al. Far-red fluorescent tags for protein imaging in living tissues[J]. Biochememical Journal, 2009, 418(3): 567-574.

【22】Weissleder R. A clearer vision for in vivo imaging[J]. Nature Biotechnology, 2001, 19: 316-317.

【23】Chen Shengping, Chen Hongwei, Hou Jing, et al. 30 W picosecond pulsed fiber laser and high power supercontinuum generation[J]. Chinese J Lasers, 2010, 37(8): 1943-1949.
陈胜平, 谌鸿伟, 侯 静, 等. 30 W 皮秒脉冲光纤激光器及高功率超连续谱的产生[J]. 中国激光, 2010, 37(8): 1943-1949.

【24】Jia Dongfang, Ge Chunfeng, Hu Zhiyong, et al. Studies on supercontinuum generation in dispersion shifted fiber by using mode-locked fiber laser[J]. Acta Optica Sinica, 2005, 25(6): 746-750.
贾东方, 葛春风, 胡智勇, 等. 利用锁模光纤激光器在色散位移光纤中产生超连续谱的研究[J]. 光学学报, 2005, 25(6): 746-750.

【25】Leblond F, Davis S C, Valdés P A, et al. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications[J]. Journal of Photochemistry and Photobiology B: Biology, 2010, 98(1): 77-94.

【26】Bindhu C V, Harilal S S. Effect of the excitation source on the quantum-yield measurements of rhodamin B laser dye studied using thermal-lens technique[J]. Analytical Sciences, 2001, 17(1): 141-144.

【27】Donnert G, Eggeling C, Hell S W. Major signal increase in fluorescence microscopy through dark-state relaxation[J]. Nature Methods, 2007, 4: 81-86.

引用该论文

Luo Yun,Liang Xiaobao,Li Chao,Zhao Lei,Deng Ying,Xu Zhenyuan. Influence of Supercontinuum Laser on Bioluminescence Imaging Technology[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121401

罗韵,梁小宝,李超,赵磊,邓颖,徐振源,封建胜,黎玥,张昊宇,王建军,景峰,朱启华. 超连续谱激光对生物荧光激发效应的影响[J]. 激光与光电子学进展, 2016, 53(12): 121401

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF