首页 > 论文 > 激光与光电子学进展 > 53卷 > 12期(pp:121202--1)

改进的基于全变分最小去噪的路径无关相位解包算法

Improved Path-Independent Phase Unwrapping Algorithm Based on Total-Variation Minimum Denoising

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

相位解包算法主要分为路径相关算法和路径无关算法, 广泛应用于光学测量领域。针对残差相位中含有噪声的问题, 提出了改进的基于全变分最小去噪的路径无关相位解包算法。首先在包裹相位图中求出相位梯度, 然后用全变分最小方法对相位梯度图去噪, 通过积分获得近似的相位解包图, 并进一步去除了残差相位图中的噪声, 经多次迭代获得最终的相位解包图。通过仿真和实验对比了去除噪声前后解包相位与原始相位的误差。结果表明, 残差相位去噪后得到解包相位的峰谷值、均方根值误差均小于未去噪的情况。

Abstract

The phase unwrapping algorithms are divided into the path-dependent type and the path-independent type, and can be widely used in the field of optical measurements. An improved path-independent phase unwrapping algorithm based on total-variation minimum denoising is proposed to wipe off the remained noise in the residual phase. Firstly, the phase gradient is determined from the wrapped phase map and subsequently denoised by the total-variation minimization based method. Thus, an approximate phase unwrapped map can be obtained by integrating the denoised phase gradient, and the residual phase map is denoised. The final phase unwrapped map is subsequently determined by adding the first few modes of the unwrapped phase. Error values of unwrapped phase before and after denoising are compared with the original phase by simulations and experiments. The results show that the values of peak-valley and root-mean-square of unwrapped phase with residual phase denoised are lower than those of unwrapped phase with residual phase not denoised.

投稿润色
补充资料

中图分类号:TN247

DOI:10.3788/lop53.121202

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(6140030594)

收稿日期:2016-08-25

修改稿日期:2016-09-05

网络出版日期:2016-11-23

作者单位    点击查看

张辉钦:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
郭仁慧:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
蒋超:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
朱文华:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
周翔:南京理工大学电子工程与光电技术学院, 江苏 南京 210094

联系人作者:张辉钦(1522405463@qq.com)

备注:张辉钦(1991—), 男, 硕士研究生, 主要从事光干涉测量方面的研究。

【1】Pritt M D. Phase unwrapping by means of multigrid techniques for interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 728-738.

【2】Liu Ke, Li Yanqiu. Phase unwrapping of interferogram with obscurations in phase-shifting interferometry[J]. Acta Optica Sinica, 2009, 29(7): 1812-1817.
刘 克, 李艳秋. 移相干涉术中有分割遮拦干涉图的相位展开[J]. 光学学报, 2009, 29(7): 1812-1817.

【3】Herráez M A, Burton D R, Lalor M J, et al. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path[J]. Applied Optics, 2002, 41(35): 7437-7444.

【4】Guo Yuan, Chen Xiaotian. Study of improved phase unwrapping algorithm based on least squares[J]. Chinese J Lasers, 2014, 41(5): 0508005.
郭 媛, 陈小天. 基于最小二乘相位解包裹改进算法的研究[J]. 中国激光, 2014, 41(5): 0508005.

【5】Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry-two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4): 713-720.

【6】Cusack R, Huntley J M, Goldrein H T. Improved noise-immune phase-unwrapping algorithm[J]. Applied Optics, 1995, 34(5): 781-789.

【7】Lu Y G, Zhao W C, Zhang X P, et al. Weighted-phase-gradient-based quality maps for two-dimensional quality-guided phase unwrapping[J]. Optics and Lasers in Engineering, 2012, 50(10): 1397-1404.

【8】Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods[J]. Journal of the Optical Society of America A, 1994, 11(1): 107-117.

【9】Pritt M D. Phase unwrapping by means of multigrid techniques for interferometric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 728-738.

【10】Guo Renhui, Li Jianxin, Zhu Rihong. Seed point unwrapping algorithm based on DCT algorithm[J]. Acta Optica Sinica, 2012, 32(2): 0212006.
郭仁慧, 李建欣, 朱日宏. 基于DCT算法的种子点相位解包算法[J]. 光学学报, 2012, 32(2): 0212006.

【11】Wu Jie, Zhou Hao, Wu Dan, et al. Study of phase unwrapping algorithm from the undersampled phase[J]. Laser & Optoelectronics Progress, 2016, 53(5): 051003.
吴 杰, 周 皓, 吴 丹, 等. 欠采样条件下相位解包裹算法的研究[J]. 激光与光电子学进展, 2016, 53(5): 051003.

【12】Wang Huaying, Liu Zuoqiang, Liao Wei, et al. Comparison of four phases unwrapping algorithm based on method of minimum norm[J]. Chinese J Lasers, 2014, 41(2): 0209016.
王华英, 刘佐强, 廖 薇, 等. 基于最小范数的四种相位解包裹算法比较[J]. 中国激光, 2014, 41(2): 0209016.

【13】Weng J F, Lo Y L. Integration of robust filters and phase unwrapping algorithms for image reconstruction of objects containing height discontinuities[J]. Optics Express, 2012, 20(10): 10896-10920.

【14】Navarro M A, Estrada J C, Servin M, et al. Fast two-dimensional simultaneous phase unwrapping and low-pass filtering[J]. Optics Express, 2012, 20(3): 2556-2561.

【15】Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D Nonlinear Phenomena, 1992, 60(1-4): 259-268.

【16】Huang H Y H, Tian L, Zhang Z, et al. Path-independent phase unwrapping using phase gradient and total-variation (TV) denoising[J]. Optics Express, 2012, 20(13): 14075-14089.

【17】Tomioka S, Heshmat S, Miyamoto N, et al. Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points[J]. Applied Optics, 2010, 49(25): 4735-4745.

【18】Chambolle A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97.

引用该论文

Zhang Huiqin,Guo Renhui,Jiang Chao,Zhu Wenhua,Zhou Xiang. Improved Path-Independent Phase Unwrapping Algorithm Based on Total-Variation Minimum Denoising[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121202

张辉钦,郭仁慧,蒋超,朱文华,周翔. 改进的基于全变分最小去噪的路径无关相位解包算法[J]. 激光与光电子学进展, 2016, 53(12): 121202

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF