首页 > 论文 > 激光与光电子学进展 > 53卷 > 12期(pp:121101--1)

基于梯度投影算法重构的压缩成像实验及质量评价

Compressed Imaging Experiments Based on Gradient Projection Algorithm Reconstruction and Image Quality Assessment

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

压缩成像方式既可以避免在红外波段追求大面阵器件, 又可以解决图像获取时难以消除的自身非均匀性, 信噪比低, 航空航天成像应用中的图像采集、传输、存储成本越来越高等问题。详细分析了该成像系统的原理模型, 搭建成像原理样机, 采用梯度投影算法进行图像重构的成像实验。在重构图像的质量评价中引入了信号子空间分析方法, 估计重构图像的信噪比。实验结果表明, 该信噪比估计方法更加准确有效。

Abstract

Compressed imaging avoids pursuing large array devices in infrared band, and it can solve problems like the heterogeneity which is difficult to eliminate during the image acquisition, low sound to noise ratio, higher and higher cost of acquiring, transmitting and storing images in the aerospace imaging applications and so on. The principle model of the compressed imaging system is analyzed in details, an imaging principle prototype is built, and the experiments of image reconstruction are conducted by the gradient projection algorithm. The signal subspace analysis is introduced in quality assessment of the reconstructed image to estimate the signal to noise ratio of the reconstructed image. Experimental results show that the proposed estimation method is more accurate and effective.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O438

DOI:10.3788/lop53.121101

所属栏目:成像系统

基金项目:国家自然科学基金(61302181)、上海技术物理研究所创新专项项目(Q-DX-38)

收稿日期:2016-08-01

修改稿日期:2016-08-16

网络出版日期:2016-12-06

作者单位    点击查看

汪磊:中国科学院上海技术物理研究所空间主动光电技术与系统实验室, 上海 200083中国科学院大学, 北京 100049
马彦鹏:中国科学院上海技术物理研究所空间主动光电技术与系统实验室, 上海 200083中国科学院大学, 北京 100049
姚波:中国科学院上海技术物理研究所空间主动光电技术与系统实验室, 上海 200083
王义坤:中国科学院上海技术物理研究所空间主动光电技术与系统实验室, 上海 200083
韩贵丞:中国科学院上海技术物理研究所空间主动光电技术与系统实验室, 上海 200083
亓洪兴:中国科学院上海技术物理研究所空间主动光电技术与系统实验室, 上海 200083中国科学院大学, 北京 100049

联系人作者:汪磊(wlchx200808@163.com)

备注:汪磊(1990—), 男, 硕士研究生, 主要从事计算成像光谱技术方面的研究。

【1】Duarte M F, Davenport M A, Takbar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

【2】Tan Shiyu, Liu Zhentao, Li Enrong, et al. Hyperspectral compressed sensing based on prior images constrained[J]. Acta Optica Sinica, 2015, 35(8): 811003.
谭诗语, 刘震涛, 李恩荣, 等. 基于先验图像约束的多光谱压缩感知[J]. 光学学报, 2015, 35(8): 811003.

【3】Weng Jiawen, Qin Yi, Yang Chuping, et al. Reconstruction of single low-coherence digital hologram by compressive sensing[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100901.
翁嘉文, 秦 怡, 杨初平, 等. 单幅弱相干光数字全息图的压缩感知重建[J]. 激光与光电子学进展, 2015, 52(10): 100901.

【4】Han Chao, Wu Wei, Li Mengmeng. Encoding and Reconstruction of lensless off-axis Fourier hologram based on the theory of compressed sensing[J]. Chinese J Lasers, 2014, 41(2): 0209015.
韩 超, 吴 伟, 李蒙蒙. 基于压缩感知理论的无透镜离轴傅里叶全息编码与重建[J]. 中国激光, 2014, 41(2): 0209015.

【5】Candès E J. Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory. 2006, 52(2): 489-509.

【6】Candès E J. Compressive sampling[C]. International Congress of Mathematics, 2006, 3: 1433-1452.

【7】Candès E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Process Magazine, 2008, 25(2): 21-30.

【8】Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.

【9】Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[C]. Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, 1993, 40-44.

【10】Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transaction on Communication, 1995, 43(12): 2959-2965.

【11】Sayood K. Statistical evaluation of image quality measures[J]. Jounal of Electronic Imaging, 2002, 11(2): 206-223.

【12】Hu Guangshu. Digital signal processing[M]. Beijing: Tsinghua University Press, 2010.
胡广书. 数字信号处理[M]. 北京: 清华大学出版社, 2010.

【13】Zhang Xianda. Matrix analysis and applications[M]. Beijing: Tsinghua University Press, 2014.
张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2014.

【14】Wax M, Kailath T. Detection of signals by information theoretic criteria[J]. IEEE Transaction on Acoustics, Speech, and Signal Processing, 1985, 33(2): 387-392.

引用该论文

Wang Lei,Ma Yanpeng,Yao Bo,Wang Yikun,Han Guicheng,Qi Hongxing. Compressed Imaging Experiments Based on Gradient Projection Algorithm Reconstruction and Image Quality Assessment[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121101

汪磊,马彦鹏,姚波,王义坤,韩贵丞,亓洪兴. 基于梯度投影算法重构的压缩成像实验及质量评价[J]. 激光与光电子学进展, 2016, 53(12): 121101

被引情况

【1】张淑芳,朱彬华,李 瑞. 基于CCD图像传感器的压缩成像方法. 激光与光电子学进展, 2017, 54(11): 111103--1

【2】郝勤正,杨玲,甄小琼,刘汉明. 能见度仪的背景光消除设计. 激光与光电子学进展, 2018, 55(3): 30102--1

【3】费延佳,邵枫. 基于图像检索的对比度调整. 激光与光电子学进展, 2018, 55(5): 51002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF