首页 > 论文 > 光谱学与光谱分析 > 36卷 > 12期(pp:3811-3816)

多层石墨烯纳米带光电探测器理论与性能分析

Analysis of Theory and Performance of Multi Layer Graphene Nanoribbons Photodetector

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

多层石墨烯具有超宽的光谱吸收范围及独特的光电性能, 是制作下一代光电探测器件的理想材料。 以石墨烯的带间隧穿理论为基础, 提出了一个多层石墨烯纳米带结构的光电探测器模型, 纳米带的两端与源极和漏极相连, 夹在半导体基质和上下栅极之间。 利用这个模型, 建立了多层石墨烯纳米带探测器的光电转换机制, 讨论了上栅极电压不同时探测器的工作原理, 研究了源-漏极间光电流及暗电流与入射光能量的关系, 探讨了探测器的偏置电压, 耗尽层长度以及带隙取值对暗电流的影响, 并分析了不同参数下探测器响应率以及探测率随入射光能量的变化关系。 结果表明, 探测器的响应率随纳米带层数的增加而增加, 受带隙, 耗尽层长度和偏置电压的影响, 最大的响应率约为103 A·W-1; 通过限制上栅压, 带隙等变量可以控制系统暗电流, 增大探测器的探测率, 最高探测率约为109 cm·Hz1/2·W-1。 多层石墨烯纳米带结构可以增强探测器对入射光的吸收, 提高探测器的灵敏度以及对弱光的探测能力, 实现对太赫兹到远红外波段入射光的有效探测, 探测性能远高于许多量子结构和窄带半导体结构的光电探测器。

Abstract

Multilayer graphene, with wide absorption spectrum and unique photoelectric properties, is an ideal material to make the next generation of photoelectric detector. Taking graphene interband tunneling theory as the foundation, a photoelectric detector model with the structure of multilayer graphene nanoribbons was proposed. Nanoribbons which contacted with source and drain electrode at the end were sandwiched between the semiconductor substrate and the top and back gate. Using this model, a photoelectric conversion mechanism of multilayer graphene nanoribbon detector was established. It discussed the working principle of the detector at different top gate voltage, studied the relationship between the source-drain current and the incident light energy, researched the influence of the bias voltage, the length of depletion and the values of band gap on the dark current, and analyzed the change of detector responsibility and detectivity with the incident light energy under the different parameters. The results show that, the responsibility of detector increases with the layers of nanoribbons, and are affected by the band gap, the length of depletion and the bias voltage. The maximum responsibility up to 103 A·W-1; By limiting on the top gate voltage, the band gap and other variables can control the dark current of system and increase the detectivity, the detectivity up to a maximum value of 109 cm Hz1/2·W-1. The structure of multilayer graphene nanoribbons can enhance the absorption of the incident light, improve the sensitivity of the detector and the detection capability of weak light, and realize the detection from THz to far infrared wavelength of incident light. The detection performance is far better than that of many quantum structures and narrow-band semiconductor structure of photoelectric detector.

投稿润色
补充资料

中图分类号:O439

DOI:10.3964/j.issn.1000-0593(2016)12-3811-06

收稿日期:2015-11-25

修改稿日期:2016-03-20

网络出版日期:--

作者单位    点击查看

刘海月:北京航空航天大学仪器科学与光电工程学院, 北京 100191微纳测控与低维物理教育部重点实验室, 北京 100191精密光机电一体化教育部重点实验室, 北京 100191
牛燕雄:北京航空航天大学仪器科学与光电工程学院, 北京 100191微纳测控与低维物理教育部重点实验室, 北京 100191精密光机电一体化教育部重点实验室, 北京 100191
尹贻恒:北京航空航天大学仪器科学与光电工程学院, 北京 100191微纳测控与低维物理教育部重点实验室, 北京 100191精密光机电一体化教育部重点实验室, 北京 100191
丁 铭:北京航空航天大学仪器科学与光电工程学院, 北京 100191
杨碧瑶:北京航空航天大学仪器科学与光电工程学院, 北京 100191微纳测控与低维物理教育部重点实验室, 北京 100191精密光机电一体化教育部重点实验室, 北京 100191
刘 帅:北京航空航天大学仪器科学与光电工程学院, 北京 100191微纳测控与低维物理教育部重点实验室, 北京 100191精密光机电一体化教育部重点实验室, 北京 100191

联系人作者:刘海月(liuhaiyueliushuai@163.com)

备注:刘海月, 1991年生, 北京航空航天大学仪器科学与光电工程学院硕士研究生

【1】Sun Zhenhua, Chang Haixin. ACS Nano, 2014, 8(5): 4133.

【2】Konstantatos G, Badioli M, Gaudreau L, et al. Nature Nanotechnology, 2012, 7(6): 363.

【3】Otsuji T, Watanabe T, Tombet B, et al. Optical Engineering, 2014, 53(3): 031206.

【4】Ribeiro Jr L A, da Cunha W F, Fonseca A L A, et al. The Journal of Physical Chemistry Letters, 2015, 6(3): 510.

【5】Liu W, Cheng J, Zhao J, et al. Journal of Modern Physics, 2015, 6(2): 95.

【6】Lee C H, Chen S C, Su W S, et al. Synthetic Metals, 2011, 161(5-6): 489.

【7】Lee C H, Yang C K, Lin M F, et al. Physical Chemistry Chemical Physics, 2011, 13(9): 3925.

【8】Yunus R M, Endo H, Tsuji M, et al. Physical Chemistry Chemical Physics, 2015, 17(38): 25210.

【9】Ahmadi E, Asgari A. Journal of Applied Physics, 2013, 113(9): 093106.

【10】Xia T, Yang P, Zhang L, et al. Solid-State and Integrated Circuit Technology, Xi’an: IEEE, 2012. 10.

【11】Chitara B, Panchakarla L S, Krupanidhi S B, et al. Adv. Mater., 2011, 23(45): 5419.

【12】Ahmadi E, Asgari A, Ahmadiniar K. Superlattices and Microstructures, 2012, 52(4): 605.

【13】Ostovari F, Moravvej-Farshi M K. Applied Physics Letters, 2014, 105(7): 072407.

【14】Ostovari F, Moravvej-Farshi M K. Applied Surface Science, 2014, 318: 108.

【15】Freitag M, Low T, Martin-Moreno L, et al. ACS Nano, 2014, 8(8): 8350.

引用该论文

LIU Hai-yue,NIU Yan-xiong,YIN Yi-heng,DING Ming1,YANG Bi-yao,LIU Shuai. Analysis of Theory and Performance of Multi Layer Graphene Nanoribbons Photodetector[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3811-3816

刘海月,牛燕雄,尹贻恒,丁 铭,杨碧瑶,刘 帅. 多层石墨烯纳米带光电探测器理论与性能分析[J]. 光谱学与光谱分析, 2016, 36(12): 3811-3816

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF