首页 > 论文 > 光谱学与光谱分析 > 36卷 > 12期(pp:4006-4012)

水中镉化合物粒子消光系数及其反射率光谱(400~900 nm)测量

Measuring the Spectrum of Extinction Coefficient and Reflectance for Cadmium Compounds from 400 to 900 nm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

测量出水中镉化合物单位浓度消光系数光谱曲线和镉化合物干燥环境下的反射率光谱曲线是水体镉元素含量遥感反演的关键。 首先采用自主设计的透射光测量装置, 利用Analytical Spectral Devices (ASD) 光谱仪分别测量了相同厚度不同浓度的两种镉化合物粒子溶液(硫化镉和氧化镉)的透射光辐亮度, 通过比值法计算出不同浓度的镉化合物粒子溶液的消光系数, 最终得到其400~900 nm波长范围内的单位浓度消光系数光谱。 然后再利用ASD光谱仪在户外晴好干燥的环境下对这两种镉化合物的反射率光谱进行了测量, 为日后进一步计算其单位浓度吸收和散射系数打下基础。 单位浓度消光系数光谱测量结果表明, 硫化镉在675 nm出现极大值, 在550和830 nm出现极小值; 氧化镉则随着波长的增加呈逐渐减少的单调趋势; 两种化合物在水中的消光作用主要在紫蓝光波段。 反射率光谱测量结果表明, 硫化镉的反射率从500 nm开始快速增大至650 nm后趋于平缓; 氧化镉从525 nm开始呈近线性递增至900 nm; 二者都具有明显的光谱特征。 本文在国内首次专门针对水质遥感领域开展了具有光活性的镉化合物的光学参数测量工作, 并获得了这两种化合物的单位浓度消光系数和反射率光谱曲线, 是水体镉含量遥感反演模型所必需的光学参数之一, 为镉含量遥感反演这一难题提供一个突破口, 测量结果可以为镉含量提取的遥感工作波段选择提供有力的参考依据, 同时也为水体镉含量的遥感提取提供了模型必需的重要参数。

Abstract

The key to extract the contents of cadmium in water by using remote sensing technique is to measure the spectrum of extinction coefficient per g·L-1 and reflectance for its compounds. So in this paper, firstly, we choose two kinds of cadmium compounds, cadmium sulfide (CdS) and cadmium oxide (CdO), which are most commonly exsit in natural water, to measure the spectrums of extinction coefficient and reflectance for them. We use the equipment, designed on our own, which can adjust the path length of light passing and make our measuring results more accurate at visible and near-infrared wavelength range than others. Then we use Analytical Spectral Devices (ASD) spectrometer to measure the radiance of the light spot, which is from the direct light passed through cadmium compounds solutions of different concentrations reflected by the standard board. Using the ratio method to eliminate environmental errors and the effects of the thimbleful of suspended solids in water, we obtain the extinction coefficient per g·L-1 of these two kinds of cadmium compounds from 400 to 900 nm. Secondly, we use ASD spectrometer to measure the reflectance spectrum of them in the sunny day at outdoor. The reflectance we obtain in this paper can help us to calculate the absorption and scattering coefficient per g·L-1 in the future. The measuring results show that the extinction coefficient spectrum of CdS has two troughs at 550 and 830 nm and one peak at 675 nm. And the extinction coefficient spectrum of CdO decrease from purple to near-infrared. Both of their coefficient spectrums in blue are larger than green and red. And the value of the extinction coefficient per g·L-1 of CdS is larger than CdO in the whole measuring wavelength range. The reflectance of CdS in yellow and red is larger than purple and blue, which increases rapidly from 500 to 650 nm and then leveling off. While the reflectance of CdO increase linearly from 525 to 900 nm. Both have obvious spectral characteristic. According to our results, the largest extinction coefficient appear at blue color, while the largest reflectance appear at yellow and red, which means that those bands are the most sensitive wavelength to detect the change of cadmium concentration in water. This study carries out with optical parameters measurements for optical activity of cadmium compounds specifically for water quality remote sensing for the first time. We conclude that the extinction coefficient and reflectance spectrums we obtained are reasonable, and the results can be used as the base parameter in the remote sensing inversion model for cadmium contents in water, which provides a breakthrough on using remote sensing technique to extract the heavy metal contents in water. Obtained these two optical parameters in this paper can provide powerful reference for band selection of the remote sensing image, which is used to extract cadmium contents in water, as well as provide the necessary important parameters of the remote sensing inversion model of cadmium contents in water.

投稿润色
补充资料

中图分类号:O657.3

DOI:10.3964/j.issn.1000-0593(2016)12-4006-07

基金项目:国家科技支撑计划项目(2012BAH32B03), 广东省水资源节约和保护资金项目(FLXGL2014-D41), 海洋公益性行业科研专项(201205040), 国家自然科学基金项目(41301452, 41204332), 广州市珠江科技新星项目(2013J2200073)资助

收稿日期:2015-11-03

修改稿日期:2016-03-05

网络出版日期:--

作者单位    点击查看

梁业恒:中山大学地理科学与规划学院, 广东 广州 510275
邓孺孺:中山大学地理科学与规划学院, 广东 广州 510275广东省水环境遥感监测工程技术研究中心, 广东 广州 510275广东省城市化与地理环境空间模拟重点实验室, 广东 广州 510275
刘永明:中山大学地理科学与规划学院, 广东 广州 510275
林 梨:中山大学地理科学与规划学院, 广东 广州 510275
秦 雁:中山大学地理科学与规划学院, 广东 广州 510275
何颖清:珠江水利科学研究院, 广东 广州 510611

联系人作者:梁业恒(liangyeheng@163.com)

备注:梁业恒, 1987年生, 中山大学地理科学与规划学院博士后

【1】DENG Ru-ru, HE Zhi-jian, CHEN Xiao-xiang, et al(邓孺孺, 何执兼, 陈晓翔, 等). Acta Scientiarum Naturalium Universitatis Sunyatseni(中山大学学报·自然科学版), 2002, 41(3): 99.

【2】Deng Ruru, Liu Qinghuo, Ke Ruipeng, et al. Acta Oceanologica Sinica, 2004, 23(1): 119.

【3】Nayereh Soltani, Elias Saion, Mohd Zobir Hussein, et al. International Journal of Molecular Sciences, 2012, 13(10): 12242.

【4】Liu Liwei, Hu Siyi, Pan Ying, et al. Beilstein Journal of Nanotechnology, 2014, 5: 919.

【5】Manickathai K, Kasi Viswanathan S, Alagar M. Indian Journal of Pure and Applied Physics, 2008, 46(8): 561.

【6】Feng Wuliang, Liu Jie, Yu Xibin. RSC Advances, 2014, 4(93): 51683.

【7】Dong Wenting, Zhu Congshan. Optical Materials, 2003, 22(3): 227.

【8】DENG Ru-ru, HE Ying-qing, QIN Yan, et al(邓孺孺, 何颖清, 秦 雁, 等). Journal of Remote Sensing (遥感学报), 2012, 16(1): 174.

【9】DENG Ru-ru, HE Ying-qing, QIN Yan, et al(邓孺孺, 何颖清, 秦 雁, 等). Journal of Remote Sensing(遥感学报), 2012, 16(1): 192.

【10】HE Ying-qing, DENG Ru-ru, CHEN Qi-dong, et al(何颖清, 邓孺孺, 陈启东, 等). Acta Scientiarum Naturalium Universitatis Sunyatseni(中山大学学报·自然科学版), 2011, 50(3): 134.

【11】DENG Ru-ru, LIANG Ye-heng, GAO Yi-kang, et al(邓孺孺, 梁业恒, 高奕康, 等). Journal of Remote Sensing(遥感学报), 2016, Accepted.

【12】LIANG Ye-heng, DENG Ru-ru, GAO Yi-kang, et al(梁业恒, 邓孺孺, 高奕康, 等). Journal of Remote Sensing(遥感学报), 2016, Accepted.

【13】August Beer. Annalen der Physik, 1852, 162(5): 78.

【14】Roger G. Burns(任 觉, 郭其悌, 译). Mineralogigal Applications of Crystal Field Theory(晶体场理论的矿物学应用). Beijing: Science Press(北京: 科学出版社), 1977.

引用该论文

LIANG Ye-heng,DENG Ru-ru,LIU Yong-ming,LIN Li,QIN Yan,HE Ying-qing. Measuring the Spectrum of Extinction Coefficient and Reflectance for Cadmium Compounds from 400 to 900 nm[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 4006-4012

梁业恒,邓孺孺,刘永明,林 梨,秦 雁,何颖清. 水中镉化合物粒子消光系数及其反射率光谱(400~900 nm)测量[J]. 光谱学与光谱分析, 2016, 36(12): 4006-4012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF