首页 > 论文 > 光谱学与光谱分析 > 36卷 > 12期(pp:4039-4044)

样品厚度对薄膜法X射线荧光光谱测量的影响研究

Study of the Impact of Sample Thickness on Thin Film Method X-Ray Fluorescence Spectrum Measurement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

分别以富集有Cr, Pb和Cd三种元素的尼龙薄膜样品及玻璃纤维滤膜为研究对象, 采用滤膜叠加的方式, 通过XRF光谱仪测量不同样品厚度下薄膜样品的XRF光谱, 根据测得的尼龙薄膜样品中Cr, Pb, Cd元素及玻璃纤维滤膜中Ca, As和Sr元素特征XRF性质的变化, 研究样品厚度对薄膜法XRF光谱测量的影响。 结果表明: 薄膜样品厚度对不同能量区间上元素特征谱线荧光性质的影响并不相同。 元素特征谱线能量越大, 元素特征X射线荧光穿透滤膜到达探测器的过程中损失越少; 但由薄膜样品厚度增加引起的基体效应却越强, 相应特征谱线位置处的背景荧光强度就越大, 因此样品厚度增加所引起的基体效应对薄膜法XRF光谱测量的灵敏度影响就越大。 对于特征谱线能量较低(能量小于7 keV)的元素, 以增加薄膜样品厚度的方式来增加待测组分的质量厚度浓度, 并不能有效地提高薄膜法XRF光谱测量的灵敏度; 对于特征谱线能量较高的元素(能量>7 keV), 可以通过适当增加样品厚度以增加被测组分的质量厚度浓度的方式来提高XRF光谱测量的灵敏度, 薄膜样品厚度在0.96~2.24 mm内, 更有利于XRF光谱的测量与分析。 该研究为大气及水体重金属薄膜法XRF光谱分析中薄样制备及富集技术提供了重要的理论依据。

Abstract

The mixed samples of nylon film enrichment of Cr, Pb and Cd three elements and glass fiber membrane filter were as the research object. With the method of superposition of membrane filter, the XRF spectra were measured under different thin film samples thicknesses. According the changes of characteristic XRF of Cr, Pb and Cd elements in the mixed sample and Ca, As and Sr elements in glass fiber membranes, the effects of sample thickness on thin film method XRF spectrum measurement were studied. The study results showed that the effects of thin film sample thickness on the fluorescent properties of elements with characteristic spectral lines in different energy ranges were different. The energy of characteristic spectral lines was greater, the loss of element characteristic X-ray fluorescence when it passed through membrane and reached detector was less. But matrix effect caused by thin film sample thickness increase was stronger with the energy of characteristic spectral lines greater. The background fluorescent intensity in corresponding characteristic spectral line location was greater. So the impact of matrix effect caused by sample thickness increase on thin film method XRF spectrum measurement sensitivity was greater. For elements with low energy characteristic spectral lines (energy≤7 keV), the way of increasing thin film sample thickness in order to increase the mass-thickness concentration of component measured, can not effectively improve the sensitivity of thin film method XRF spectrum measurement. And thin film samples thickness within 0.96 mm is conductive to the measurement and analysis of XRF spectrum. For element with higher energy characteristic spectra lines(energy>7 keV), the sensitivity of XRF spectrum measurement can be appropriately increased by the way of increase thin film sample thickness in order to increase the mass-thickness concentration of component measured. And thin film samples thickness within 0.96~2.24 mm is more conductive to the measurement and analysis of XRF spectrum. The study provides an important theoretical basis for thin sample preparation and enrichment technology of thin film method X-ray fluorescence spectrum analysis the atmosphere and water heavy metal.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O657.3

DOI:10.3964/j.issn.1000-0593(2016)12-4039-06

基金项目:皖江新兴产业技术发展中心企业合作项目(ZNJX-15-10), 国家(863)计划项(2013AA065502), 国家自然科学基金项目(61405257), 安徽省自然科学基金项目(1508085MF138), 安徽省自主创新专项(12Z0104074)资)

收稿日期:2015-08-18

修改稿日期:2015-12-10

网络出版日期:--

作者单位    点击查看

甘婷婷:中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031皖江新兴产业技术发展中心, 安徽 铜陵 244000
张玉钧:中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
赵南京:中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
殷高方:中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
肖 雪:中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
章 炜:中国人民解放军陆军军官学院, 安徽 合肥 230031
刘建国:中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
刘文清:中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽省环境光学监测技术重点实验室, 安徽 合肥 230031

联系人作者:甘婷婷(tingtinggan@163.com)

备注:甘婷婷, 女, 1986年生, 中国科学院安徽光学精密机械研究所助理研究员

【1】LIU Yan-de, WAN Chang-lan, SUN Xu-dong, et al(刘燕德, 万常斓, 孙旭东, 等). Laser and Infrared(激光与红外), 2011, 41(6): 605.

【2】Kurunczi S, Trk Sz, Beal J W. Journal of Radioanalytical and Nuclear Chemistry, 2002, 253(2): 291.

【3】YE Hua-jun, LIAO Xin-feng, GUO Sheng-liang, et al. Advanced Materials Research, 2012, 518-523: 1510.

【4】YE Hua-jun, GUO Sheng-liang, JIANG Xue-jiao, et al(叶华俊, 郭生良, 姜雪娇, 等). Chinese Journal of Scientific Instrument(仪器仪表学报), 2012, 33(5): 1161.

【5】Tsuji K, Nakano K, Takahashi Y, et al. Analytical Chemistry, 2012, 84(2): 636.

【6】Radu T, Diamond D. Journal of Hazardous Materials, 2009, 171: 1168.

【7】ZHANG Rong, ZHANG Yu-jun, ZHANG Wei, et al(张 荣, 张玉钧, 章 炜, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(2): 554.

【8】Bontempi E, Bertuzzi R, Ferretti E, et al. Microchimica Acta, 2008, 161: 301.

【9】Malandrino M, Martino M D, Giacomino A, et al. Chemosphere, 2013, 90: 2578.

【10】Kurunczi S, Torok S, Beal J W. X-Ray Spectrom, 1999, 28: 352.

【11】Godelitsas A, Nastos P, Mertzimekis T J, et al. Nuclear Instruments and Methods in Physics Research B, 2011, 269: 3077.

【12】Khodeir M, Shamy M, Alghamdi M, et al. Atmospheric Pollution Research, 2012, 3: 331.

【13】PENG Yuan-zhen, HUANG Yong-ming, YUAN Dong-xing, et al. Chinese Journal of Analytical Chemistry, 2012, 40(6): 877.

引用该论文

GAN Ting-ting,ZHANG Yu-jun,ZHAO Nan-jing,YIN Gao-fang,XIAO Xue,ZHANG Wei,LIU Jian-guo,LIU Wen-qing. Study of the Impact of Sample Thickness on Thin Film Method X-Ray Fluorescence Spectrum Measurement[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 4039-4044

甘婷婷,张玉钧,赵南京,殷高方,肖 雪,章 炜,刘建国,刘文清. 样品厚度对薄膜法X射线荧光光谱测量的影响研究[J]. 光谱学与光谱分析, 2016, 36(12): 4039-4044

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF