首页 > 论文 > 中国激光 > 44卷 > 1期(pp:102009--1)

飞秒激光前向转移诱导产生金属纳米结构薄膜

Metal Nanostructured Film Generated by Femtosecond Laser Induced Forward Transfer

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

使用掺镱光子晶体光纤飞秒激光放大系统作为加工光源, 利用激光诱导前向转移(LIFT)技术对铜膜进行加工, 产生纳米结构。通过控制飞秒激光光源参数, 得到不同纳米结构的金属薄膜。在功率较低时, 能够得到纳米团簇; 随着功率升高, 团簇尺寸变大; 到达一定功率时, 出现纳米线结构。通过实验分析了飞秒激光与材料相互作用时发生的物理过程。利用该机理, 对20, 40, 200 nm三种厚度的铜膜在相同实验条件下的实验结果进行比较, 获得了产生纳米团簇和纳米线结构薄膜的最佳条件。

Abstract

Yb-doped photonic crystal fiber femtosecond laser amplification system is used as the processing light source, and nanostructures are produced from copper thin films by laser induced forward transfer (LIFT) technique. Metal films composed of different nanostructures can be obtained by controlling the parameters of femtosecond laser source. Nanoclusters are produced under lower power, and their sizes grow bigger with the power increasing. Then nanowire structures appear when the power rises to a certain level. Some physical processes of the interaction between femtosecond laser and materials are analyzed by experiments. On the basis of the mechanisms, experimental results of copper thin films with three different thicknesses of 20, 40, 200 nm are compared under the same experimental conditions. According to the results, optimum parameters are obtained for the generation of nanoclusters and nanowire structures.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/cjl201744.0102009

所属栏目:“超快激光加工与微纳制造”专题

基金项目:国家自然科学基金(61322502,61535009,11274239)、教育部长江学者创新团队计划(IRT13033)

收稿日期:2016-08-10

修改稿日期:2016-09-21

网络出版日期:--

作者单位    点击查看

余佳:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术科学教育部重点实验室, 天津 300072
何书通:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术科学教育部重点实验室, 天津 300072
宋寰宇:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术科学教育部重点实验室, 天津 300072
王清月:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术科学教育部重点实验室, 天津 300072
胡明列:天津大学精密仪器与光电子工程学院超快激光研究室光电信息技术科学教育部重点实验室, 天津 300072

联系人作者:余佳(yujia215@tju.edu.cn)

备注:余佳(1991-), 男, 硕士研究生, 主要从事飞秒激光微纳加工方面的研究。

【1】Shang L, Dong S, Nienhaus G U. Ultra-small fluorescent metal nanoclusters: synthesis and biological applications[J]. Nano Today, 2011, 6(4): 401-418.

【2】Niidome T. Development of functional gold nanorods for bioimaging and photothermal therapy[C]. Journal of Physics: Conference Series. IOP Publishing, 2010, 232(1): 012011.

【3】Sadeghi S M. Plasmonic metaresonance nanosensors: ultrasensitive tunable optical sensors based on nanoparticle molecules[J]. IEEE Transactions on Nanotechnology, 2011, 10(3): 566-571.

【4】Connell J G, Al Balushi Z Y, Sohn K, et al. Growth of Ge nanowires from Au-Cu alloy nanoparticle catalysts synthesized from aqueous solution[J]. Journal of Physical Chemistry Letters, 2010, 1(23): 3360-3365.

【5】Xue M, Zhang Z, Zhu N, et al. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects[J]. Langmuir, 2009, 25(8): 4347-4351.

【6】Zhang H, Zhou Y N, Sun Q, et al. Nanostructured nickel fluoride thin film as a new Li storage material[J]. Solid State Sciences, 2008, 10(9): 1166-1172.

【7】Fernández-Pradas J M, Colina M, Serra P, et al. Laser-induced forward transfer of biomolecules[J]. Thin Solid Films, 2004, 453-454(2): 27-30.

【8】Tseng M L, Chang C M, Chen B H, et al. Fabrication of plasmonic devices using femtosecond laser-induced forward transfer technique[J]. Nanotechnology, 2012, 23(44): 444013.

【9】Florian C, Caballero-Lucas F, Fernández-Pradas J M, et al. Printing of silver conductive lines through laser-induced forward transfer[J]. Applied Surface Science, 2016, 374: 265-270.

【10】Yang L, Wang C, Ni X, et al. Microdroplet deposition of copper film by femtosecond laser-induced forward transfer[J]. Applied Physics Letters, 2006, 89(16): 161110.

【11】Glover T E. Hydrodynamics of particle formation following femtosecond laser ablation[J]. Journal of the Optical Society of America B, 2002, 20(1): 125-131.

【12】Zhang N, Zhu X, Yang J, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum[J]. Physical Review Letters, 2007, 99(16): 167602.

【13】Amoruso S, Ausanio G, Bruzzese R, et al. Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum[J]. Physical Review B, 2005, 71(3): 033406.

【14】Liu W Z, Xu H Y, Wang L, et al. Size-controlled growth of ZnO nanowires by catalyst-free high-pressure pulsed laser deposition and their optical properties[J]. AIP Advances, 2011, 1(2): 022145.

【15】Zhang Y, Russo R E, Mao S S. Femtosecond laser assisted growth of ZnO nanowires[J]. Applied Physics Letters, 2005, 87(13): 133115.

【16】Gudiksen M S, Lieber C M. Diameter-selective synthesis of semiconductor nanowires[J]. Journal of the American Chemical Society, 2000, 122(36): 8801-8802.

【17】Susner M A, Carnevale S D, Kent T F, et al. Catalyst-free ZnO nanowires on silicon by pulsed laser deposition with tunable density and aspect ratio[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 62: 95-103.

【18】Swarnkar R K, Pandey J K, Soumya K K, et al. Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium[J]. Applied Physics A, 2016, 122(7): 1-7.

【19】Anoop K K, Fittipaldi R, Rubano A, et al. Direct femtosecond laser ablation of copper with an optical vortex beam[J]. Journal of Applied Physics, 2014, 116(11): 113102.

【20】Zhakhovskii V V, Inogamov N A, Nishihara K. New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse[J]. JETP Letters, 2008, 87(8): 423-427.

【21】Wu C, Zhigilei L V. Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations[J]. Applied Physics A, 2014, 114(1): 11-32.

引用该论文

Yu Jia,He Shutong,Song Huanyu,Wang Qingyue,Hu Minglie. Metal Nanostructured Film Generated by Femtosecond Laser Induced Forward Transfer[J]. Chinese Journal of Lasers, 2017, 44(1): 0102009

余佳,何书通,宋寰宇,王清月,胡明列. 飞秒激光前向转移诱导产生金属纳米结构薄膜[J]. 中国激光, 2017, 44(1): 0102009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF