首页 > 论文 > 中国激光 > 44卷 > 1期(pp:102013--1)

带热障涂层的高温合金飞秒激光旋切打孔

Trepanning of Supper-Alloy with Thermal Barrier Coating Using Femtosecond Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对燃气轮机叶片气膜孔传统加工方法存在的缺陷, 采用飞秒激光旋切带热障涂层的高温合金加工气膜孔, 获得了无裂纹、无附着残渣及无重铸层的锥孔。结合飞秒激光加工过程中材料的去除机理, 分析得出:等角速度旋切造成的孔锥度较大; 材料的去除过程为绝热冷却过程, 即与周边材料几乎没有热交换, 未发生基体材料熔化后重新凝固形成重铸层的过程。然而, 在孔的入口发现黑色附着物, 随着加工次数的增加, 逐步覆盖整个入口边缘的部分。试验过程中可收集到含有镍、锆、氧等元素的纳米颗粒, 证明被去除的材料通过液相爆破的方式以纳米颗粒的形式快速离开基体, 从而解释了加工后在孔壁未发现大量附着残渣粘连的原因。相对于低速单层旋切, 高速多层旋切加工效率更高。

Abstract

To avoid the defects of conventional methods to manufacture gas film holes for gas turbine blades, femtosecond laser is applied to trepanning supper-alloy with thermal barrier coating, and holes without crack extension, attached debris, and recast layer are obtained. Combined with the material removal mechanism of femtosecond laser drilling, it can be obtained through analysis that the taper of holes is larger under trepanning with same angular speed. In addition, the process of material removal is considered as adiabatic cooling, that is, thers is nearly no heat exchange between processing material and the surrounding material. Therefore, the process of substrate material melting and re-solidifying to form a recast layer does not happen. However, black attachments are found around the hole entrance, and as the cutting times increase, they gradually cover the entire part of the entrance edge. Nanoparticles with elements nickel, zirconium and oxygen are collected during processing, which proves that the removed material leaves the substrate quickly in nanoparticles through the phase explosion mechanism. This explains why no attached debris is found on the pore wall. Compared with low-speed single layer cutting, high-speed multilayer cutting is much more efficient.

投稿润色
补充资料

中图分类号:TN253

DOI:10.3788/cjl201744.0102013

所属栏目:“超快激光加工与微纳制造”专题

基金项目:国家自然科学基金(51405258)、清华大学自主科研计划项目(2013Z02-1,20131089209)、博士点专项科研基金(20130002110009)

收稿日期:2016-08-16

修改稿日期:2016-09-21

网络出版日期:--

作者单位    点击查看

张学谦:清华大学机械工程系, 北京 100084
邢松龄:清华大学机械工程系, 北京 100084
刘磊:清华大学机械工程系, 北京 100084清华大学机械工程系摩擦学国家重点实验室, 北京 100084
李勇:清华大学机械工程系, 北京 100084清华大学机械工程系摩擦学国家重点实验室, 北京 100084
佟浩:清华大学机械工程系, 北京 100084清华大学机械工程系摩擦学国家重点实验室, 北京 100084
邹贵生:清华大学机械工程系, 北京 100084

联系人作者:张学谦(zhangxq14@mails.tsinghua.edu.cn)

备注:张学谦 (1985-), 男, 硕士研究生, 主要从事超快激光材料加工方面的研究。

【1】李孝堂, 侯凌云, 杨 敏. 现代燃气轮机技术[M]. 北京: 航空工业出版社, 2006: 1-4.

【2】Lane C. The development of a 2D ultrasonic array inspection for single crystal turbine blades[M]. Switzerland: Springer International Publishing, 2014: 1-12.

【3】Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284.

【4】Ramesh S, Ramirez D G, Ekkad S V, et al. Analysis of film cooling performance of advanced tripod hole geometries with and without manufacturing features[J]. International Journal of Heat and Mass Transfer, 2016, 94: 9-19.

【5】Zhu Hainan, Qi Yunxia. Development of machining technology gas holes on turbine blades[J]. Aeronautical Manufacturing Technology, 2011(13): 71-74.
朱海南, 齐歆霞. 涡轮叶片气膜孔加工技术及其发展[J]. 航空制造技术, 2011(13): 71-74.

【6】Beck T. Laser drilling in gas turbine blades[J]. Laser Technik Journal, 2011, 8(3): 40-43.

【7】Sezer H K, Li L, Schmidt M, et al. Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys[J]. International Journal of Machine Tools and Manufacture, 2006, 46(15): 1972-1982.

【8】陈甲琪, 周立江. 涡轮叶片电加工孔重熔层控制及去除方法[J]. 电加工与模具, 2012(2): 61-62.

【9】Liu D, Seraffon M, Flewitt P E J, et al. Effect of substrate curvature on residual stresses and failure modes of an air plasma sprayed thermal barrier coating system[J]. Journal of the European Ceramic Society, 2013, 33(15): 3345-3357.

【10】Rickerby D S, Winstone M R. Coatings for gas turbines[J]. Materials & Manufacturing Processes, 1992, 7(4): 495-526.

【11】Schulz W, Eppelt U, Poprawe R. Review on laser drilling I. Fundamentals, modeling, and simulation[J]. Journal of Laser Applications, 2013, 25(1): 012006.

【12】Chichkov B N, Momma C, Nolte S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115.

【13】Das D K, Pollock T M. Femtosecond laser machining of cooling holes in thermal barrier coated CMSX4 superalloy[J]. Journal of Materials Processing Technology, 2009, 209(15): 5661-5668.

【14】Feng Q, Picard Y N, McDonald J P, et al. Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings[J]. Materials Science and Engineering: A, 2006, 430(1): 203-207.

【15】Das D K, McDonald J P, Yalisove S M, et al. Femtosecond pulsed laser damage characteristics of 7% Y2O3-ZrO2 thermal barrier coating[J]. Applied Physics A, 2008, 91(3): 421-428.

【16】Haini J, Xiaojun Y, Wei Z, et al. Femtosecond laser pulses for drilling the shaped micro-hole of turbine blades[J]. Chinese Physics Letters, 2013, 30(4): 044202.

【17】Laskin A, Laskin V. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers[C]. SPIE, 2016, 9834: 98340B.

【18】Wang X C, Li Z L, Chen T, et al. 355 nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates[J]. Optics & Lasers in Engineering, 2008, 46(5): 404-409.

【19】Wang X C, Zheng H Y, Chu P L, et al. Femtosecond laser drilling of alumina ceramic substrates[J]. Applied Physics A, 2010, 101(2): 271-278.

【20】Ashkenasi D, Kaszemeikat T, Mueller N, et al. Laser trepanning for industrial applications[J]. Physics Procedia, 2011, 12: 323-331.

【21】Chen J K, Tzou D Y, Beraun J E. A semiclassical two-temperature model for ultrafast laser heating[J]. International Journal of Heat and Mass Transfer, 2006, 49(1): 307-316.

【22】Cheng C, Xu X. Mechanisms of decomposition of metal during femtosecond laser ablation[J]. Physical Review B, 2005, 72(16): 165415.

【23】Amoruso S, Bruzzese R, Wang X, et al. Propagation of a femtosecond pulsed laser ablation plume into a background atmosphere[J]. Applied Physics Letters, 2008, 92(4): 041503.

【24】Povarnitsyn M E, Itina T E, Sentis M, et al. Material decomposition mechanisms in femtosecond laser interactions with metals[J]. Physical Review B, 2007, 75(23): 235414.

【25】Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films[J]. Reports on Progress in Physics, 2013, 76(3): 036502.

【26】Zhou Y, Wu B, Tao S, et al. Physical mechanism of silicon ablation with long nanosecond laser pulses at 1064 nm through time-resolved observation[J]. Applied Surface Science, 2011, 257(7): 2886-2890.

【27】Voisey K T, Kudesia S S, Rodden W S O, et al. Melt ejection during laser drilling of metals[J]. Materials Science and Engineering: A, 2003, 356(1): 414-424.

【28】Voisey K T, Clyne T W. Laser drilling of cooling holes through plasma sprayed thermal barrier coatings[J]. Surface and Coatings Technology, 2004, 176(3): 296-306.

【29】Low D K Y, Li L, Corfe A G. Characteristics of spatter formation under the effects of different laser parameters during laser drilling[J]. Journal of Materials Processing Technology, 2001, 118(1-3): 179-186.

引用该论文

Zhang Xueqian,Xing Songling,Liu Lei,Li Yong,Tong Hao,Zou Guisheng. Trepanning of Supper-Alloy with Thermal Barrier Coating Using Femtosecond Laser[J]. Chinese Journal of Lasers, 2017, 44(1): 0102013

张学谦,邢松龄,刘磊,李勇,佟浩,邹贵生. 带热障涂层的高温合金飞秒激光旋切打孔[J]. 中国激光, 2017, 44(1): 0102013

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF