首页 > 论文 > 中国激光 > 44卷 > 1期(pp:110003--1)

基于超宽带铋铒共掺光纤光源的光纤光栅传感

Fiber Bragg Grating Sensing by Ultra-Broadband Light Source Based on Bismuth-Erbium Co-Doped Fiber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为开发低成本且性能稳定的超宽带光源, 研究了基于铋铒共掺光纤(BEDF)的超宽带光源的输出光谱特性。当使用830 nm激光器抽运时, 输出光谱覆盖了整个O、E、S、C、L波段, 半峰全宽达525 nm。将该BEDF超宽带光源应用于波分复用光纤光栅传感系统, 实现了O波段和C波段的应力传感。实验结果表明, 将BEDF超宽带光源应用于大规模光纤光栅传感网络, 可大幅度提高传感系统的复用容量。

Abstract

In order to develop both cheap and stable ultra-broadband light sources, the output spectral characteristics of ultra-broadband light source based on Bismuth-Erbium co-doped fiber (BEDF) are investigated. With the 830 nm lasers as pump, the output spectrum covers the whole O-, E-, S-, C-, L-bands and the full width at half maximum (FWHM) reaches 525 nm. With the application of BEDF ultra-broadband light source in wavelength division multiplexing fiber Bragg grating (FBG) sensing system, the strain sensing at O band and C band is realized. Experimental results indicate that the application of BEDF ultra-broadband light sources to large-scale FBG network can greatly increase the multiplexing capacity of the sensing system.

投稿润色
补充资料

中图分类号:TN253

DOI:10.3788/cjl201744.0110003

所属栏目:遥感与传感器

基金项目:国家自然科学基金(61405014, 61520106014)、纤维材料改性国家重点实验室(东华大学)开放课题(LK1502)、信息光子学与光通信国家重点实验室(北京邮电大学)基金(IPOC2014B010, IPOC2016ZT07)、重庆市教委科技项目(KJ131125)

收稿日期:2016-09-14

修改稿日期:2016-11-04

网络出版日期:--

作者单位    点击查看

李春生:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
颜玢玢:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
王大朋:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
林锦锋:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
崔亚男:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
桑新柱:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
王葵如:北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
罗艳华:东华大学纤维材料改性国家重点实验室, 上海 201600新南威尔士大学电气工程与通信学院光子学与光通信实验室, 悉尼 2052, 澳大利亚
彭纲定:新南威尔士大学电气工程与通信学院光子学与光通信实验室, 悉尼 2052, 澳大利亚
罗映祥:重庆三峡学院电子与信息工程学院, 重庆 404000

联系人作者:李春生(lichunsheng@bupt.edu.cn)

备注:李春生 (1992-) , 男, 硕士研究生, 主要从事光纤放大器方面的研究。

【1】Chan T H T, Yu L, Tam H Y, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: Background and experimental observation[J]. Engineering Structures, 2006, 28(5): 648-659.

【2】Rao Y J. Recent progress in applications of in-fibre Bragg grating sensors[J]. Optics and Lasers in Engineering, 1999, 31(4): 297-324.

【3】Pang Dandan, Sui Qingmei, Jiang Mingshun. New fiber Bragg grating high temperature sensing network based on diffraction demodulation[J]. Chinese J Lasers, 2011, 38(11): 1105005.
庞丹丹, 隋青美, 姜明顺. 基于衍射解调的新型光纤光栅高温传感网络[J]. 中国激光, 2011, 38(11): 1105005.

【4】Yang Mu, Liu Xiuhong, Liu Wei, et al. Applied research of optical fiber sensor in oil and gas pipe corrosion monitoring[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020604.
杨 牧, 刘秀红, 刘 伟, 等. 光纤光栅传感网络在油气出地管内腐蚀监测的应用研究[J]. 激光与光电子学进展, 2014, 51(2): 020604.

【5】Luo Tao, Gu Zhengtian. Progress of biological and chemical sensors based on long period grating in photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2009, 46(11): 34-40.
罗 涛, 顾铮. 光子晶体光纤光栅在生物和化学传感器领域研究进展[J]. 激光与光电子学进展, 2009, 46(11): 34-40.

【6】Berkoff T A, Kersey A D. Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection[J]. IEEE Photonics Technology Letters, 1996, 8(11): 1522-1524.

【7】Chen Haiyun, Gu Zhengtian, Gao Kan. Multi-parameter photochemical sensing technology of long-period fiber grating and wavelength division multiplexing[J]. Chinese J Lasers, 2014, 41(2): 0205003.
陈海云, 顾铮, 高 侃. 基于波分复用的长周期光纤光栅光化学多参量传感技术研究[J]. 中国激光, 2014, 41(2): 0205003.

【8】Lee J H, Kim C H, Han Y G, et al. Broadband, high power, erbium fibre ASE-based CW supercontinuum source for spectrum-sliced WDM PON applications[J]. Electronics Letters, 2006, 42(9): 549-550.

【9】Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184.

【10】Dvoyrin V V, Mashinsky V M, Dianov E M, et al. Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres[C]. 2005 31st European Conference on Optical Communication, Glasgow, 2005: 949-950.

【11】Luo Y H, Wen J X, Zhang J Z, et al. Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands[J]. Optics Letters, 2012, 37(16): 3447-3449.

【12】Zhang J Z, Sathi Z M, Luo Y H, et al. Toward an ultra-broadband emission source based on the bismuth and erbium co-doped optical fiber and a single 830 nm laser diode pump[J]. Optics Express, 2013, 21(6): 7786-7792.

【13】Bufetov I A, Melkumov M A, Firstov S V, et al. Bi-doped optical fibers and fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 111-125.

【14】Lyytikinen K J. Control of complex structural geometry in optical fibre drawing[D]. Sydney: University of Sydney, 2004.

【15】Fujimoto Y, Nakatsuka M. 27Al NMR structural study on aluminum coordination state in bismuth doped silica glass[J]. Journal of Non-crystalline Solids, 2006, 352(21-22): 2254-2258.

【16】Sathi Z M, Zhang J Z, Luo Y H, et al. Spectral properties and role of aluminium-related bismuth active centre (BAC-Al) in bismuth and erbium co-doped fibres[J]. Optical Materials Express, 2015, 5(5): 1195-1209.

引用该论文

Li Chunsheng,Yan Binbin,Wang Dapeng,Lin Jinfeng,Cui Yanan,Sang Xinzhu,Wang Kuiru,Luo Yanhua,Peng Gangding,Luo Yingxiang. Fiber Bragg Grating Sensing by Ultra-Broadband Light Source Based on Bismuth-Erbium Co-Doped Fiber[J]. Chinese Journal of Lasers, 2017, 44(1): 0110003

李春生,颜玢玢,王大朋,林锦锋,崔亚男,桑新柱,王葵如,罗艳华,彭纲定,罗映祥. 基于超宽带铋铒共掺光纤光源的光纤光栅传感[J]. 中国激光, 2017, 44(1): 0110003

被引情况

【1】汪韬,范慧艳,赵国营,程继萌,陈伟,胡丽丽,Guzik Malgorzata,Boulon Georges. Yb3+掺杂铋酸盐玻璃的发光特性. 中国激光, 2017, 44(9): 903001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF