首页 > 论文 > 中国激光 > 44卷 > 1期(pp:104002--1)

空间光调制器像素尺寸对非球面检测误差影响分析

Impact of Spatial Light Modulator Pixel Pitch on the Accuracy of Aspheric Testing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

空间光调制器(SLM)可以在电驱动等信号控制下, 实时调节振幅、相位、偏振态等信息, 近年来已被尝试用于代替计算全息(CGH)板实现非球面检测。SLM像素尺寸在3.5~20 μm, 远大于CGH板刻蚀分辨率, 使得SLM的相位调制量在像素尺度离散化, 与理想的连续相位存在误差, 带来检测精度的降低。因此, 有必要评估SLM像素尺寸对检测精度的影响, 从而选择合适像素尺寸的SLM。基于菲涅耳衍射原理以及快速傅里叶变换算法, 仿真波面经SLM调制并传播到待测表面的过程, 并探究待测面处生成波面精度与SLM像素尺寸大小之间的关系。对多组波面进行仿真并分析波面误差分布发现, SLM生成补偿波面误差与SLM像素尺寸所能表示的最大频率相关, 检测时需保证SLM像素尺寸所能表示的最大频率大于补偿波面频率最大值。

Abstract

Spatial light modulator (SLM) is an alternative product as it can change the distribution of amplitude, phase and polarization state under the control of the electric signals. In recent years, SLM is used in aspheric testing in place of the computer generated holography (CGH) plate. However, SLM pixel pitch is around 3.5~20 μm, which is much larger than the CGH plate etching resolution and the phase modulation is discrete, error existing with ideal continuous phase modulation and causing detection accuracy reduction. So it is necessary to consider the influence of SLM pixel pitch on detection accuracy so as to choose SLM with proper pixel pitch. Wave-front reconstructed by SLM and spread to the measured surface process is simulated based on Fresnel diffraction theory and fast Fourier transform algorithm. And the relationship between the reference wave-front precision and SLM pixel pitch is analyzed. Several sets of wave-front are computed and the error distribution is analyzed. The conclusion is that the SLM generation compensation wave-front is related to the maximum frequency presented by SLM pixel pitch, and it is necessary to keep the maximum frequency presented by SLM pixel pitch above the compensation wave-front maximum frequency range.

投稿润色
补充资料

中图分类号:O439

DOI:10.3788/cjl201744.0104002

所属栏目:测量与计量

基金项目:国家自然科学基金青年科学基金(11602280)

收稿日期:2016-09-18

修改稿日期:2016-10-08

网络出版日期:--

作者单位    点击查看

马啸:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800中国科学院大学, 北京 100049
刘世杰:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
张志刚:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800
邵建达:中国科学院上海光学精密机械研究所强激光材料重点实验室, 上海 201800

联系人作者:马啸(chujiangkuo@163.com)

备注:马啸(1992-), 男, 硕士研究生, 主要从事光学检测方面的研究。

【1】Shi Tu, Yang Yongying, Zhang Lei, et al. Surface testing methods of aspheric optical elements[J]. Chinese Optics, 2014, 7(1): 26-46.
师 途, 杨甬英, 张 磊, 等. 非球面光学元件的面形检测技术[J]. 中国光学, 2014, 7(1): 26-46.

【2】Song Qiang, Yang Baoxi, Yuan Qiao, et al. Study on large convex aspherical lens testing[J]. Chinese J Lasers, 2014, 41(4): 0408003.
宋 强, 杨宝喜, 袁 乔, 等. 大口径凸球面面形检测方法研究[J]. 中国激光, 2014, 41(4): 0408003.

【3】Jin Chunxiang, Liu Shijie, Zhou You, et al. Study on measurement of medium and low spatial wavefront errors of long focal length lens[J]. Chinese Optics Letters, 2014, 12(S2): S21203.

【4】Zhao Wenchuan, Su Xianyu, Liu Yuankun, et al. Testing an aspheric mirror based on phase measuring deflectometry[J]. Chinese J Lasers, 2010, 37(5): 1338-1341.
赵文川, 苏显渝, 刘元坤, 等. 基于相位偏折术的非球面镜检测方法[J]. 中国激光, 2010, 37(5): 1338-1341.

【5】Li Ming, Yan Lisong, Xue Donglin, et al. Hybrid compensation testing of convex asphere with computer generated holograms and fold sphere[J]. Acta Optica Sinica, 2015, 35(11): 1112001.
李 明, 闫力松, 薛栋林, 等. 计算机再现全息与辅助球面混合补偿检测凸非球面方法研究[J]. 光学学报, 2015, 35(11): 1112001.

【6】Feng Jie. High accuracy aspheric surface testing based on computer-generated hologram[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2014: 35-60.
冯 婕. 基于CGH高精度非球面检测技术研究[D]. 成都: 中国科学院光电技术研究所, 2014: 35-60.

【7】Gao Songyao, Sui Yongxin, Yang Huaijiang. High precise testing of asphere with computer-generayed hologram and error evaluation[J]. Acta Optica Sinica, 2013, 33(6): 0612003.
高松涛, 隋永新, 杨怀江. 用计算全息图对非球面的高精度检测与误差评估[D]. 光学学报, 2013, 33(6): 0612003.

【8】Huang Ya, Ma Jun, Zhu Rihong, et al. Investigation of measurement uncertainty of optical freeform surface based on computer-generated hologram[J]. Acta Optica Sinica, 2015, 35(11): 1112007.
黄 亚, 马 骏, 朱日宏, 等. 基于计算全息的光学自由曲面测量不确定度分析[J]. 光学学报, 2015, 35(11): 1112007.

【9】Liu Yongjun, Hu Lifa, Cao Zhaoliang, et al. The investigation of controllable phase liquid crystal spatial light modulator[J]. Acta Optica Sinica, 2005, 34(12): 1799-1802.
刘永军, 胡立发, 曹召良, 等. 高精度纯相位液晶空间光调制器的研究[J]. 光学学报, 2005, 34(12): 1799-1802.

【10】Hu L, Xuan L, Liu Y, et al. Phase-only liquid-crystal spatial light modulator for wave-front correction with high precision[J]. Optic Express, 2004, 12(26): 6403-6409

【11】Xi Qingkui. Research on the error theory and application of the real-time computer-generated holograms[D]. Nanjing: Nanjing University of Science & Technology, 2007: 69-90.
席庆奎. 实时计算全息技术与误差分析理论分析研究[D]. 南京: 南京理工大学, 2007: 69-90.

【12】Bai Xuelian. Research on computer-generated hologram aspheric testing based on liquid crystal television[D]. Nanjing: Nanjing University of Science & Technology, 2004: 45-70.
白雪莲. 液晶电视用于计算全息非球面测试技术的研究[D]. 南京: 南京理工大学, 2004: 45-70.

【13】Cao Zhaoliang, Hu Wusheng, Hu Lifa, et al. Application of the liquid crystal kinoform for optical testing[J]. Acta Photonica Sinica, 2006, 35(12): 1941-1945.
曹召良, 胡五生, 胡立发, 等. 液晶相息图用于光学检测[J]. 光子学报, 2006, 35(12): 1941-1945.

【14】Zhang Hongxin, Zhang Jian, Wu Liying, et al. Wavefront correction using liquid crystal spatial light modulator[J]. Infrared and Laser Engineering, 2008, 37(6): 1062-1065.
张洪鑫, 张 健, 吴向莹, 等. 液晶空间光调制器用于波前校正的研究[J]. 红外与激光工程, 2008, 37(6): 1062-1065.

【15】Han Jun, Zheng Ting, Nie Liang, et al. Optimization method of reconstruct wavefront based on spatial light modulator[J]. Acta Photonica Sinica, 2011, 40(9): 1413-1418.
韩 军, 郑 婷, 聂 亮, 等. 基于空间光调制器的波面重建优化方法研究[J]. 光子学报, 2011, 40(9): 1413-1418.

【16】Shen Chuan, Zhang Cheng, Liu Kaifeng, et al. Research on issues about reconstructed holographic image based on a pixelated spatial light modulator[J]. Acta Optica Sinica, 2012, 32(3): 0309001.
沈 川, 张 成, 刘凯峰, 等. 基于像素结构空间光调制器的全息再现像问题研究[J]. 光学学报, 2012, 32(3): 0309001.

【17】Zhang H, Zhou H, Li J, et al. Research on encoding multi-gray-scale phase hologram and wavefront reconstruction[J]. Applied Optics, 2016, 55(10): 2701-2707.

【18】Li Chonguang. Design, manufacture and error analysis of CGH for ultra-precision testing aspheric surface[D]. Changchun: Jilin University, 2013: 13-14.
李重阳. 用于超高精度非球面面形检测的CGH的设计、制作及误差分析[D]. 长春: 吉林大学, 2013: 13-14.

【19】Meng Xiaochen, Hao Qun, Zhu Qiudong, et al. Optimization design of partially compensating lens based on Zemax[J]. Acta Optica Sinica, 2011, 31(6): 0622002.
孟晓辰, 郝 群, 朱秋东, 等. 基于Zemax的部分补偿透镜的优化设计[J]. 光学学报, 2011, 31(6): 0622002.

【20】Xing Zhenchong, Zhang Bao, Hong Yongfeng. Design of compensator of convex aspheric surface with small apertures[J]. Chinese J Lasers, 2015, 42(11): 1116001.
邢振冲, 张 葆, 洪永丰. 一种小口径凸非球面补偿器的设计[J]. 中国激光, 2015, 42(11): 1116001.

【21】Goodman J W, Gustafson S C. Introduction to Fourier optics[J]. Optical Engineering, 1996, 35(5): 1513.

【22】Voelz D G. Computational Fourier optics[M]. Bellingham: SPIE, 2011: 63-82.

【23】Schmidt J D. Numerical simulation of optical wave propagation[M]. Bellingham: SPIE, 2010: 87-130.

引用该论文

Ma Xiao,Liu Shijie,Zhang Zhigang,Shao Jianda. Impact of Spatial Light Modulator Pixel Pitch on the Accuracy of Aspheric Testing[J]. Chinese Journal of Lasers, 2017, 44(1): 0104002

马啸,刘世杰,张志刚,邵建达. 空间光调制器像素尺寸对非球面检测误差影响分析[J]. 中国激光, 2017, 44(1): 0104002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF