首页 > 论文 > 中国激光 > 44卷 > 1期(pp:103001--1)

近场显微成像法识别高功率激光镜片薄膜内部缺陷

Identifying Defects in Thin Film of High Power Laser Lens by Using Near Field Microimaging Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用近场显微成像法测量了高功率激光镜片薄膜表面裂纹和内部节瘤缺陷,并分析了它们的形成机制。100 nm孔径的圆锥形针尖辐射的倏逝波与薄膜中预埋的缺陷相互作用, 将倏逝波转化为辐射波后, 由物镜收集并在远场逐点成像,同步地获得薄膜表面的原子力显微镜(AFM)图像和扫描近场光学显微镜(SNOM)图像, 以便直观地识别缺陷产生的物理机制。结果表明:在倏逝波的有效作用区域内, 薄膜表面裂纹与内部节瘤可以同时精确地被识别。通过对比SNOM与AFM结果, 发现基底表面裂纹在镀膜过程中积累了残余应力, 这导致薄膜的表面呈层状断裂, 其单条最小裂纹横向剖面尺寸为165 nm, 超过了传统远场检测的实验检测精度; 此外, SNOM图中的亮斑表明, 薄膜的内部有高于基底折射率的节瘤存在。

Abstract

The surface flaws and internal knots in a film of high power laser lens are experimentally measured by using a near field micro-image method, and their formation mechanisms are analyzed as well. The evanescent waves radiated by a conic tip at a 100 nm diameter interact with the defects embedded in the films. After the evanescent waves are converted into radiation waves, they are collected by the objective lens and imaged point by point in the far field. Atomic force microscopy (AFM) images and scanning near-field optical microscopy (SNOM) images on the surface of the thin film are obtained synchronously, so as to visually identify the physical mechanisms of the defects formation. The results show that the surface flaw and the internal knot in thin film are accurately identified at the same time in effective interacting areas of evanescent wave. By comparing AFM result with SNOM result, we find that the surface flaw of substrate accumulates the residual stress in the processing of coating, which results in a layered cracking on the surface of film. The crosswise profile scale of single minimum flaw is 165 nm, which is beyond experimental detection precision of traditional far field detection. In addition, the high hot spot in SNOM graph shows that refractive index of knots exist in the thin film is higher than that in substrate.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/CJL201744.0103001

所属栏目:材料与薄膜

基金项目:国家自然科学基金(11204046)、科技部国际科技合作专项(2014DFA00670)、贵州省国际科技合作项目(黔科合外G字[2011]7001号)、贵阳市科技局项目(筑科合同[2012103]71号)

收稿日期:2016-09-29

修改稿日期:2016-11-02

网络出版日期:--

作者单位    点击查看

白忠臣:贵州大学贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025
黄兆岭:贵州大学贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025
郝礼才:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
陆安江:贵州大学大数据与信息工程学院, 贵州 贵阳 550025
秦水介:贵州大学贵州省光电子技术及应用重点实验室, 贵州 贵阳 550025

联系人作者:白忠臣(yufengvc@163.com)

备注:白忠臣(1979-), 男, 博士, 副教授, 主要从事光学材料及光学检测方面的研究。

【1】Zheng Wanguo. Damage resistance and physical problems of high power laser facilties[M]. Beijing: Science Press, 2014.
郑万国. 高功率激光装置的负载能力及其相关物理问题[M]. 北京: 科学出版社, 2014.

【2】Wang H, Hsieh S J, Singh B. Detection of pinhole defects in optical film using thermography and artificial neural network[C]. SPIE, 2015, 9485: 94850J.

【3】Saravanan K, Krishnan R, Hsieh S H, et al. Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films[J]. RSC Advances, 2015, 5(51): 40813-40819.

【4】Tang J, Chai J, Huang J, et al. ZnO nanorods with low intrinsic defects and high optical performance grown by facile microwave-assisted solution method[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4737-4743.

【5】Hao C, Shirolkar M M, Li J, et al. Defects generated by MF magnetron sputtering and their influences on the electrical and optical properties of Al doped ZnO thin films[J]. Applied Surface Science, 2015, 351: 392-400.

【6】Zhou Lidan, Su Jingqin, Li Ping, et al. Quantitative relation between “defects” distribution on optics and near-field quality in high power solid-state laser system[J]. Acta Physica Sinica, 2011, 60(2): 253-259.
周丽丹, 粟敬钦, 李 平, 等. 高功率固体激光装置光学元件“缺陷”分布与光束近场质量的定量关系研究[J]. 物理学报, 2011, 60(2): 253-259.

【7】Fan Zhengxiu. Optics film and its application[M]. Shanghai: Shanghai Jiaotong University Press, 2014.
范正修. 光学薄膜及其应用[M]. 上海: 上海交通大学出版社, 2014.

【8】Tang Jinfa. Modern optical thin film technology[M]. Hangzhou: Zhejiang University Press, 2006.
唐晋发. 现代光学薄膜技术[M]. 杭州: 浙江大学出版社, 2006.

【9】Movchan B A, Demchishin A V. Investigation of the structure and properties of thick vacuum-deposited films of nickel, titanium, tungsten, alumina and zirconium dioxide[J]. Phys Met Metallogr, 1969, 28(83): 653-660.

【10】Spalvins T, Brainard W A. Nodular growth in thick-sputtered metallic coatings[J]. Journal of Vacuum Science & Technology, 1974, 11(6): 1186-1192.

【11】Trumpy G, Gschwind R. Optical detection of dust and scratches on photographic film[J]. Journal on Computing and Cultural Heritage, 2015, 8(2): 1-19.

【12】Reedy Jr E D. Tensile cracking of a brittle conformal coating on a rough substrate[J]. International Journal of Fracture, 2016, 199(2): 245-250.

【13】Bloembergen N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics, 1973, 12(4): 661-664.

【14】Demos S G, Negres R A, Raman R N, et al. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica[J]. Laser & Photonics Reviews, 2013, 7(3): 444-452.

【15】Johnson L F, Ashley E J, Donovan T M, et al. Scanning electron microscopy studies of laser damage initiating defects in ZnSe/ThF4 and SiH/SiO2 multilayer coatings[C]//1985 Los Angeles Technical Symposium. International Society for Optics and Photonics, 1985: 127-139.

【16】Sawicki R H, Shang C C, Swatloski T L. Failure characterization of nodular defects in multilayer dielectric coatings[C]//Laser-Induced Damage in Optical Materials: 1994. International Society for Optics and Photonics, 1995: 333-343.

【17】You Kewei, Zhang Yanli, Zhang Xuejie, et al. Analysis of near-field modulations caused by defects in high power laser system[J]. Chinese J lasers, 2016, 43(3): 0302002.
尤科伟, 张艳丽, 张雪洁, 等. 高功率激光系统中缺陷引起的近场调制分析[J]. 中国激光, 2016, 43(3): 0302002.

【18】Moses E I, Lindl J D, Spaeth M L, et al. Overview: development of the national ignition facility and the transition to a user facility for the ignition campaign and high energy density scientific research[J]. Fusion Science and Technology, 2016, 69(1): 1-24.

【19】Shaw M, House R. Laser performance operations model (LPOM): the computational system that automates the setup and performance analysis of the National Ignition Facility[C]. SPIE, 2015, 9345: 93450E.

【20】Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the national ignition facility[J]. Fusion Science and Technology, 2016, 69(1): 614-620.

【21】Wu Xiaoye, Zhang Lichao, Shi Guang. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics, 2014, 4(5): 701-711.
武潇野, 张立超, 时 光. 应用于高性能光学薄膜表征的光热光声检测技术[J]. 中国光学, 2014, 4(5): 701-711.

【22】Qin Yuwei. Study on defect detection of optical thin film using optical coherence tomography[J]. Laser & Optoelectronics Progress, 2015, 52(7): 71202.
秦玉伟. 光学薄膜缺陷的光学相干层析检测方法研究[J]. 激光与光电子学进展, 2015, 52(7): 71202.

【23】Tan Hengying, Liu Pengcheng, Shi Baixuan. Non destructive testing of laser induced damage in optical thin films by laser photothermal deflection image[J]. Acta Photonica Sinica, 2005, 34(1): 158-160.
谈恒英, 刘鹏程, 施柏煊. 激光光热偏转成象法无损检测光学薄膜的激光损伤[J]. 光子学报, 2005, 34(1): 158-160.

【24】Mauser N, Hartschuh A. Tip-enhanced near-field optical microscopy[J]. Chemical Society Reviews, 2014, 43(4): 1248-1262.

引用该论文

Bai Zhongchen,Huang Zhaoling,Hao Licai,Lu Anjiang,Qin Shuijie. Identifying Defects in Thin Film of High Power Laser Lens by Using Near Field Microimaging Method[J]. Chinese Journal of Lasers, 2017, 44(1): 0103001

白忠臣,黄兆岭,郝礼才,陆安江,秦水介. 近场显微成像法识别高功率激光镜片薄膜内部缺陷[J]. 中国激光, 2017, 44(1): 0103001

被引情况

【1】彭嫚,白忠臣,张莹,黎显继,张正平. 基于量子点荧光猝灭法的蛋白质检测芯片. 激光与光电子学进展, 2019, 56(6): 62601--1

【2】付秀华,陈成,胡章贵,熊仕富,张静,王菲,王晨鑫. 278 nm全固态激光系统倍频分离膜的研制. 中国激光, 2019, 46(12): 1203002--1

【3】刘鹏程,昌梦雨,白忠臣,秦水介. TiN纳米粒子增强CdSe/Al2O3异质结荧光的研究. 中国激光, 2020, 47(9): 913001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF