首页 > 论文 > 光学学报 > 37卷 > 1期(pp:112007--1)

窄线宽激光在光学谐振腔腔长精密测量中的应用

Application of Narrow Linewidth Laser in Precision Measurement of Optical Resonator Cavity Length

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种利用窄线宽激光作为测量光源, 对光学谐振腔自由光谱区、腔内共振激光波长进行精密测量而得到光学谐振腔腔长的方法。对光学谐振腔腔长的测量理论进行了严格推导, 通过理论模拟对测量条件及结果进行了分析讨论。以自行研制的线宽为1.9 Hz、频率不稳定度为1.7×10-14 s-1、中心波长为1550 nm的窄线宽激光作为光源, 对长度约100 mm的光学谐振腔腔长进行了精密测量。对光学谐振腔自由光谱区进行测量, 得到其腔长为0.10024407 m、精度为22 nm; 对光学谐振腔腔内共振激光波长进行测量, 得到其腔长为0.1002440884 m、精度为0.21 nm, 精度相对提高了2个量级。提出的方法有望促进基础物理研究、材料的物理属性精密测量及光纤传感等领域的发展。

Abstract

A new method for measuring cavity length of optical resonator is proposed by measuring the free spectral range of optical resonator and the intracavity resonance laser wavelength with narrow linewidth lasers as light sources. The measurement theory of optical resonator cavity length is strictly deduced, and the measurement conditions and results are analyzed and discussed by theoretical simulation. An optical resonator with cavity length about 100 mm is measured precisely with the developed narrow linewidth laser as light source, of which the linewidth is 1.9 Hz, the frequency instability is 1.7×10-14 s-1 and the central wavelength is 1550 nm. The free spectral region of the optical resonator is measured, and it is obtained that the cavity length of the optical resonator and the precision are 0.10024407 m and 22 nm, respectively. The intracavity resonance laser wavelength of the optical resonator is measured, and it is obtained that the cavity length of the optical resonator and the precision are 0.1002440884 m and 0.21 nm, respectively. The accuracy is improved by two orders of magnitude. The proposed method is expected to promote the development of basic physics research, physical properties precision measurement of materials, fiber sensing and so on.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/aos201737.0112007

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金委重大科研仪器设备研制专项(61127901)、国家自然科学基金(11273024, 61025023)、国家自然科学基金青年科学基金(11403031)、中组部“青年拔尖人才支持计划” 项目(组厅字[2013]33 号)、中科院科技创新“交叉与合作团队” 项目(中科院人教字(2012)119 号)、中国科学院重点部署项目(KJZD-EW-W02)

收稿日期:2016-07-06

修改稿日期:2016-09-12

网络出版日期:--

作者单位    点击查看

焦东东:中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
高静:中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
邓雪:中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
许冠军:中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
董瑞芳:中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
刘涛:中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600
张首刚:中国科学院国家授时中心时间频率基准重点实验室, 陕西 西安 710600

联系人作者:焦东东(jandan19@sina.com)

备注:焦东东(1989—), 男, 硕士, 研究实习员, 主要从事1550 nm窄线宽激光器方面的研究。

【1】Estler W T, Edmundson K L, Peggs G N, et al. Large-scale metrology-an update[J]. CIRP Annals-Manufacturing Technology, 2002, 51(2): 587-609.

【2】Pritchard M E, Simons M. A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes[J]. Nature, 2002, 418(6894): 167-171.

【3】Cui M, Zetitouny M G, Bhattacharya N, et al. Long distance measurement with femtosecond pulses using a dispersive interferometer[J]. Optics Express, 2011, 19(7): 6549-6562.

【4】Joo K N, Kim S W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser[J]. Optics Express, 2006, 14(13): 5954-5960.

【5】Meng Fei, Cao Shiying, Cai Yue, et al. Study of the femtosecond fiber comb and absolute optical frequency measurement[J]. Acta Physica Sinica, 2011, 60(10): 100601.
孟 飞, 曹士英, 蔡 岳, 等. 光纤飞秒光学频率梳的研制及绝对光学频率测量[J]. 物理学报, 2011, 60(10): 100601.

【6】Xing Shujian, Zhang Fumin, Cao Shiying, et al. Arbitrary and absolute length measurement based on femtosecond optical frequency comb[J]. Acta Physica Sinica, 2013, 62(17): 170603.
郉书剑, 张福民, 曹士英, 等. 飞秒光频梳的任意长绝对测距[J]. 物理学报, 2013, 62(17): 170603.

【7】Fang Zhanjun, Wang Qiang, Wang Minming, et al. Femtosecond frequency comb and optical frequency measurement of 532 nm Nd∶YAG laser[J]. Acta Physica Sinica, 2007, 56(10): 5684-5690.
方占军, 王 强, 王民明, 等. 飞秒光梳和碘稳频532 nm Nd∶YAG激光频率的测量[J]. 物理学报, 2007, 56(10): 5684-5690.

【8】Ye J. Absolute measurement of a long, arbitrary distance to less than an optical fringe[J]. Optics Letters, 2004, 29(10): 1153-1155.

【9】Wang Guochao, Yan Shuhua, Yang Jun, et al. Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs[J]. Acta Physica Sinica, 2013, 62(7): 070601.
王国超, 颜树华, 杨 俊, 等. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析[J]. 物理学报, 2013, 62(7): 070601.

【10】Liu Miao, Yang Xueyou, Liu Changjie. Phase shift laser range finding with a novel quadrature modulation method and system implementation[J]. Chinese J Lasers, 2012, 39(2): 0208004.
刘 邈, 杨学友, 刘常杰. 正交混频相位式激光测距方法与系统实现[J]. 中国激光, 2012, 39(2): 0208004.

【11】Fujima I, Iwasaki S, Seta K. High-resolution distance meter using optical intensity modulation at 28 GHz[J]. Measurement Science & Technology, 1998, 9(7): 1049-1052.

【12】Wang Ju. Research on key techniques in ultra-large capacity multiple wavelength all-optical regeneration and in OEO based high-precision absolute distance measurements over a long range[D]. Tianjin: Tianjin University, 2013: 22.
王 菊. 超大容量多波长全光再生与基于OEO的大量程、高精度绝对距离测量技术研究[D]. 天津: 天津大学, 2013: 22.

【13】Zhang Tao, Zhu Jigui, Guo Tinghang, et al. Effect of fiber length on distance measurement based on optoelectronic oscillator[J]. Chinese J Lasers, 2013, 40(9): 0908003.
张 涛, 邾继贵, 郭挺航, 等. 光纤长度对基于光电振荡器距离测量的影响[J]. 中国激光, 2013, 40(9): 0908003.

【14】Stone J A, Stejskal A, Howard L. Absolute interferometry with a 670 nm external cavity diode laser[J]. Applied Optics, 1999, 38(28): 5981-5994.

【15】Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356.

【16】Cui M, Zeitouny M G, Bhattacharya N, et al. Long distance measurement with femtosecond pulses using a dispersive interferometer[J]. Optics Express, 2011, 19(7): 6549-6552.

【17】Du Jinjin , Li Wenfang, Wen Ruijuan, et al. Precision measurement of resonate frequency and the effective cavity length of the high finesse optical micro-cavity[J]. Acta Physica Sinica, 2013, 62(19): 194203.
杜金锦, 李文芳, 文瑞娟, 等. 超高精细度微光学腔共振频率及有效腔长的精密测量[J]. 物理学报, 2013, 62(19): 194203.

【18】Cranch G A, Flockhart G M H, Kirkendall C K. Efficient fiber Bragg grating and fiber Fabry-Perot sensor multiplexing scheme using a broadband pulsed mode-locked laser[J]. Journal of Lightwave Technology, 2005, 23(11): 3798-3806.

【19】Rao Yunjiang, Zhou Changxue, Ran Zengling, et al. SFDM/WDM for large number of fiber-optic F-P sensors based on chirped fiber Bragg grating[J]. Chinese J Lasers, 2006, 33(5): 631-635.
饶云江, 周昌学, 冉曾令, 等. 啁啾光纤光栅法布里珀罗传感器波分频分复用[J]. 中国激光, 2006, 33(5): 631-635.

【20】Zhang Le, Wu Bo, Ye Wen, et al. Highly sensitive fiber-optic vibration sensor based on frequency-locking of a FBG Fabry-Perot cavity[J]. Acta Optica Sinica, 2011, 31(4): 0406006.
张 乐, 吴 波, 叶 雯, 等. 基于光纤光栅法布里—珀罗腔锁频原理的高灵敏度光纤振动传感器[J]. 光学学报, 2011, 31(4): 0406006.

【21】Niu Siliang, Rao Wei, Liang Xun, et al. Visibility analysis of interferometric fiber Bragg grating defined Fabry-Perot sensor system under Guassian profile approximation[J]. Acta Optica Sinica, 2012, 39(3): 0305006.
牛嗣亮, 饶 伟, 梁 迅, 等. 采用高斯波形近似的干涉型光纤光栅法布里-珀罗传感系统的可见度分析[J]. 光学学报, 2012, 39(3): 0305006.

【22】Lan Xinju. Laser technique[M]. Wuhan: Huazhong University of Science and Technology, 2009: 224.
蓝信钜. 激光技术[M]. 武汉: 华中科技大学出版社, 2009: 224.

【23】Yao Qijun. Optical tutorial[M]. Beijing: Higher Education Press, 2008: 350.
姚启钧. 光学教程[M]. 北京: 高等教育出版社, 2008: 350.

【24】Jiao Dongdong, Gao Jing, Liu Jie, et al. Development and application of communication band narrow linewidth lasers[J]. Acta Physica Sinica, 2015, 64(19): 190601.
焦东东, 高 静, 刘 杰, 等. 用于光频传递的通信波段窄线宽激光器研制及应用[J]. 物理学报, 2015, 64(19): 190601.

【25】Jiang Yanyi. Narrow line width lasers: Application to optical clocks[D]. Shanghai: East China Normal University, 2012: 61-67.
蒋燕义. 超窄线宽激光及其在光钟中的应用[D]. 上海: 华东师范大学, 2012: 61-67.

引用该论文

Jiao Dongdong,Gao Jing,Deng Xue,Xu Guanjun,Dong Ruifang,Liu Tao,Zhang Shougang. Application of Narrow Linewidth Laser in Precision Measurement of Optical Resonator Cavity Length[J]. Acta Optica Sinica, 2017, 37(1): 0112007

焦东东,高静,邓雪,许冠军,董瑞芳,刘涛,张首刚. 窄线宽激光在光学谐振腔腔长精密测量中的应用[J]. 光学学报, 2017, 37(1): 0112007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF