Chinese Optics Letters, 2017, 15 (1): 010008, Published Online: Jul. 26, 2018  

4 × 4 multiple-input multiple-output coherent microwave photonic link with optical independent sideband and optical orthogonal modulation (Invited Paper)

Author Affiliations
Microwave Photonics Research Laboratory, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
Abstract
A 4×4 multiple-input multiple-output coherent microwave photonic (MWP) link to transmit four wireless signals with an identical microwave center frequency over a single optical wavelength based on optical independent sideband (OISB) modulation and optical orthogonal modulation with an improved spectral efficiency is proposed and experimentally demonstrated. At the transmitter, the OISB modulation and optical orthogonal modulation are implemented to generate an OISB signal using a dual-parallel Mach–Zehnder modulator (DP-MZM) driven by four microwave orthogonal frequency-division multiplexing (OFDM) signals with an identical microwave center frequency. At the receiver, the OISB signal is coherently detected at a coherent receiver where a free-running local oscillator (LO) laser source is employed. Digital signal processing is then used to recover the four OFDM signals, to eliminate the phase noise from the transmitter laser source and the LO laser source, and to cancel the unstable wavelength difference between the wavelengths of the transmitter laser source and the LO laser source. Error-free transmission of three 16 quadrature amplitude modulation (16-QAM) 1 Gbps OFDM signals and one 16-QAM 1.5 Gbps OFDM signal at a microwave center frequency of 2.91 GHz over a 10 km single-mode fiber is experimentally demonstrated.

Xiang Chen, Jianping Yao. 4 × 4 multiple-input multiple-output coherent microwave photonic link with optical independent sideband and optical orthogonal modulation (Invited Paper)[J]. Chinese Optics Letters, 2017, 15(1): 010008.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!