首页 > 论文 > 光子学报 > 46卷 > 1期(pp:101001--1)

基于拉盖尔-高斯光束的单光子捕获概率研究

Study on Single-photon Acquisition Probability Based on Laguerre-Gaussian Beams

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

单光子源通常采用基于高斯光束的高度衰减激光脉冲, 假设激光束具有初始高斯时域脉冲波形和TEM01模拉盖尔-高斯空域分布.基于折射率起伏的Rytov近似和修正von Karman谱模型, 研究了大气湍流对星地量子通信单光子捕获概率的影响; 建立了上行信道和下行信道的单光子捕获概率理论模型; 针对低轨卫星-地面站间激光链路, 对单光子捕获概率进行了分析.结果表明: 上行信道的单光子捕获概率强烈依赖于地面折射率结构常数C2n(0), 且随着C2n(0)的增加而减小; 然而, 下行信道的单光子捕获概率并不依赖于C2n(0), 即大气湍流对其没有影响.

Abstract

Highly attenuated laser pulses based on Gaussian beams are used as single-photon sources. It is assumed that this laser beam has an initial Gaussian temporal pulse shape and a TEM01 mode Laguerre-Gaussian spatial profile. Based on the Rytov approximation and the modified von Karman spectrum model of refractive-index fluctuations, the influence of atmospheric turbulence on a single-photon acquisition probability in satellite-ground quantum communications was studied. Theoretical models of the single-photon acquisition probability in an uplink channel and a downlink channel were established. The single-photon acquisition probability was analyzed for laser links between a ground station and a satellite in a low earth orbit. The results show that, the single-photon acquisition probability in the uplink channel depends strongly on the refractive-index structure parameter at the ground C2n(0) and decreases as C2n(0) increasing. However, in the downlink channel the single-photon acquisition probability does not depend on C2n(0), that is, atmospheric turbulence has little influence on it.

投稿润色
补充资料

中图分类号:TN929.13

DOI:10.3788/gzxb20174601.0101001

基金项目:The Natural Science Foundation of Heilongjiang Province of China (No. F200831) and the Scientific Research Fund of Heilongjiang Provincial Education Department of China (No.12511119)

收稿日期:2016-09-02

修改稿日期:2016-11-01

网络出版日期:--

作者单位    点击查看

张光宇:哈尔滨理工大学 应用科学学院, 哈尔滨150080
刘琳婧:哈尔滨理工大学 应用科学学院, 哈尔滨150080
张成龙:哈尔滨理工大学 应用科学学院, 哈尔滨150080

联系人作者:张光宇(guangyuzhang@163.com)

备注:ZHANG Guang-yu (1971-), male, professor, Ph.D. degree, mainly focuses on free-space quantum communications.

【1】RESCH K J, LINDENTHAL M, BLAUENSTEINER B, et al. Distributing entanglement and single photons through an intra-city, free-space quantum channel[J]. Optics Express, 2005, 13(1): 202-209.

【2】MARCIKIC I, LAMAS-LINARES A, KURTSIEFER C. Free-space quantum key distribution with entangled photons[J]. Applied Physics Letters, 2006, 89(10): 101122.

【3】ZHANG Guang-yu, SONG Si-yu, LI Jun-lin, et al. Free-space quantum-key distribution with polarization compensation[J]. Journal of Russian Laser Research, 2011, 32(6): 579-583.

【4】HUGHES R J, NORDHOLT J E, DERKACS D, et al. Practical free-space quantum key distribution over 10 km in daylight and at night[J]. New Journal of Physics, 2002, 4(1): 43.1-43.14.

【5】KURTSIEFER C, ZARDA P, HALDER M, et al. A step towards global key distribution[J]. Nature, 2002, 419(6906): 450.

【6】SCHMITT-MANDERBACH T, WEIER H, FURST M, et al. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km[J]. Physical Review Letters, 2007, 98(1): 010504.

【7】ASPELMEYER M, BOHM H R, GYATSO T, et al. Long-distance free-space distribution of quantum entanglement[J]. Science, 2003, 301(5633): 621-623.

【8】PENG Cheng-zhi, YANG Tao, BAO Xiao-hui, et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication[J]. Physical Review Letters, 2005, 94(15): 150501.

【9】URSIN R, TIEFENBACHER F, SCHMITT-MANDERBACH T, et al. Entanglement-based quantum communication over 144 km[J]. Nature Physics, 2007, 3: 481-486.

【10】NORDHOLT J E, HUGHES R J, MORGAN G L, et al. Present and future free-space quantum key distribution[C]. SPIE, 2002, 4635: 116-126.

【11】RARITY J G, TAPSTER P R, GORMAN P M, et al. Ground to satellite secure key exchange using quantum cryptography[J]. New Journal of Physics, 2002, 4(1): 82.1-82.21.

【12】ZHANG Guang-yu, YANG Zhe, ZHANG Cheng-long, et al. Dynamic polarization-basis compensation for free-space quantum communications[J]. China Communications, 2013, 10(2): 27-32.

【13】MIAO Er-long, HAN Zheng-fu, GONG Shun-sheng, et al. Background noise of satellite-to-ground quantum key distribution[J]. New Journal of Physics, 2005, 7: 215.

【14】BONATO C, ASPELMEYER M, JENNEWEIN T, et al. Influence of satellite motion on polarization qubits in a space-earth quantum communication link[J]. Optics Express, 2006, 14(21): 10050-10059.

【15】VILLORESI P, JENNEWEIN T, TAMBURINI F, et al. Experimental verification of the feasibility of a quantum channel between space and earth[J]. New Journal of Physics, 2008, 10: 033038.

【16】DU Wen-he, YAO Zhong-min, LIU Dao-sen, et al. Influence of non-kolmogorov turbulence on intensity fluctuations in laser satellite communication[J]. Journal of Russian Laser Research, 2012, 33(1): 90-97.

【17】DU Wen-he, ZHU Heng-jun, LIU Dao-sen, et al. Effect of non-kolmogorov turbulence on beam spreading in satellite laser communication[J]. Journal of Russian Laser Research, 2012, 33(5): 401-408.

【18】ERDMANN R. Proposed methods of addressing some rate and range limits in quantum cryptography[C]. SPIE, 2002, 4821: 486-493.

【19】ZHANG Guang-yu, MA Jing, TAN Li-ying, et al. Single-photon acquisition probability for free-space quantum key distribution[C]. SPIE, 2005, 5631: 173-180.

【20】ZHANG Guang-yu, MA Jing, TAN Li-ying. Theoretical study of single-photon acquisition based on Hermite-Gaussian beams[J]. Acta Photonica Sinica, 2005, 34(8): 1201-1204.

【21】ZHANG Guang-yu, MA Jing, TAN Li-ying. Theoretical analysis of single-photon acquisition in satellite-to-ground quantum key distribution[J]. Opto-Electronic Engineering, 2006, 33(3): 91-94.

【22】BI Hui-ning, MA Jing. Study of single-photon acquisition probability based on Hermite-Gaussian beams[J]. Chinese Journal of Lasers, 2010, 37(2): 428-432.

【23】ZHANG Yi-xin, XU Jian-cai, WANG Jian-yu, et al. Detection probability model of single photons propagation in a slant path turbulent atmosphere[C]. Chengdu: Proceedings of IEEE International Symposium on Photonics and Optoelectronics, 2010: 1-4.

【24】BANAKH V A. Spatiotemporal coherence of nonmonochromatic laser radiation in a turbulent atmosphere[J]. Quantum Electronics, 2006, 36(3): 253-256.

【25】ZHANG Yi-xin, WANG Gao-gang. Slant path average intensity of finite optical beam propagating in turbulent atmosphere[J]. Chinese Optics Letters, 2006, 4(10): 559-562.

引用该论文

ZHANG Guang-yu,LIU Lin-jing,ZHANG Cheng-long. Study on Single-photon Acquisition Probability Based on Laguerre-Gaussian Beams[J]. ACTA PHOTONICA SINICA, 2017, 46(1): 0101001

张光宇,刘琳婧,张成龙. 基于拉盖尔-高斯光束的单光子捕获概率研究[J]. 光子学报, 2017, 46(1): 0101001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF