首页 > 论文 > 激光与光电子学进展 > 54卷 > 2期(pp:22702--1)

基于少模光纤模分复用的量子信号-经典光信号共纤同传技术

Co-Fiber-Transmission Technology for Quantum Signal and Classical Optical Signal Based on Mode Division Multiplexing in Few-Mode Fiber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

量子信号和经典光信号共纤同传技术是光纤量子保密通信实用化进程中的关键技术, 该技术可以显著降低量子保密通信网络的建设成本。通过比较离散变量量子信号和连续变量量子信号分别与经典光信号共纤同传的基本原理, 提出了基于少模光纤(FMF)模分复用(MDM)的离散变量量子信号、连续变量量子信号以及经典光信号三者共纤同传的方法, 降低了非线性损伤及噪声, 有效地利用了现有的光纤资源。结合离散变量量子密钥分发技术和连续变量量子密钥分发技术的优势, 构建了更加稳定有效的量子保密通信网络。

Abstract

The key technology in practical optical fiber quantum private communication is the co-fiber-transmission technology for quantum signal and classical optical signal. The cost of quantum private communication network construction can be decreased remarkably by the co-fiber-transmission technology. The co-fiber-transmission principles of propagating classical optical signal together with discrete-variable quantum signal and continuous-variable quantum signal are compared. The co-fiber-transmission of discrete-variable quantum signal, continuous-variable quantum signal and classical optical signal based on mode division multiplexing in few-mode fiber (FMF) is proposed to reduce nonlinear damage and noise. This new scheme can use the fiber resource efficiently. A stable and efficient quantum private communication network is established when we integrate the technical advantages of discrete-variable quantum key distribution and continuous-variable quantum key distribution.

广告组4 - 量子光学(超导单光子,符合计数器)
补充资料

中图分类号:O431.2

DOI:10.3788/lop54.022702

所属栏目:量子光学

收稿日期:2016-09-18

修改稿日期:2016-09-30

网络出版日期:--

作者单位    点击查看

罗均文:空军工程大学信息与导航学院, 陕西 西安 710077
李云霞:空军工程大学信息与导航学院, 陕西 西安 710077
石磊:空军工程大学信息与导航学院, 陕西 西安 710077
蒙文:空军工程大学信息与导航学院, 陕西 西安 710077
许振宇:空军工程大学信息与导航学院, 陕西 西安 710077
薛阳:空军工程大学信息与导航学院, 陕西 西安 710077

联系人作者:罗均文(khd65482@163.com)

备注:罗均文(1992-), 男, 硕士研究生, 主要从事量子通信和光通信方面的研究。

【1】Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing[J]. Theoretical Computer Science, 2014, 560: 7-11.

【2】Bennett C H. Quantum cryptography using any two non-orthogonal states[J]. Physical Review Letters, 1992, 68(21): 3121-3124.

【3】Ekert A K. Quantum cryptography based on Bell′s theorem[J]. Physical Review Letters, 1991, 67(6): 661-663.

【4】Ralph T C. Continuous variable quantum cryptography[J]. Physical Review A, 1999, 61(1): 010303.

【5】Lo H K, Chau H F, Ardehali M. Efficient quantum key distribution scheme and a proof of its unconditional security[J]. Journal of Cryptology, 2005, 18(2): 133-165.

【6】Li Ruixue, Ma Haiqiang, Wei Kejin, et al. Polarization-insensitive phase modulation in fiber quantum key distribution system[J]. Laser & Optoelectronics Progress, 2016, 53(4): 040601.
李瑞雪, 马海强, 韦克金, 等. 光纤量子密钥分发系统中的偏振无关相位调制[J]. 激光与光电子学进展, 2016, 53(4): 040601.

【7】Cai X Q, Niu H F. Quantum private communication with an anonymous sender[J]. International Journal of Theoretical Physics, 2013, 52(2): 411-419.

【8】Liu W Q, Peng J Y, Wang C, et al. Hybrid quantum private communication with continuous-variable and discrete-variable signals[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(2): 020301.

【9】Baumeler A, Broadbent A. Quantum private information retrieval has linear communication complexity[J]. Journal of Cryptology, 2015, 28(1): 161-175.

【10】Aleksic S, Winkler D, Poppe A, et al. Distribution of quantum keys in optically transparent networks: Perspectives, limitations and challenges[C]. 15th International Conference on Transparent Optical Networks, 2013: 13779014.

【11】Qi B, Zhu W, Qian L, et al. Feasibility of quantum key distribution through a dense wavelength division multiplexing network[J]. New Journal of Physics, 2010, 12(10): 103042.

【12】Peters N A, Toliver P, Chapuran T E, et al. Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments[J]. New Journal of Physics, 2009, 11(4): 045012.

【13】Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701.

【14】Essiambre R, Mecozzi A. Capacity limits in single mode fiber and scaling for spatial multiplexing[C]. Optical Fiber Communication Conference, Optical Society of America, 2012: OW3D.1.

【15】Liu Lingling, Jing Mingyong, Yu Bo, et al. Polarization control in single photons phase coding quantum key distribution system[J]. Laser & Optoelectronics Progress, 2015, 52(7): 072701.
刘令令, 景明勇, 于 波, 等. 单光子相位编码量子密钥分发系统中的偏振控制[J]. 激光与光电子学进展, 2015, 52(7): 072701.

【16】Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing[J]. Electronics Letters, 1997, 33(3): 188-190.

【17】Nweke N I, Toliver P, Runser R J, et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels[J]. Applied Physics Letters, 2005, 87(17): 174103.

【18】Chapuran T E, Toliver P, Peters N A, et al. Optical networking for quantum key distribution and quantum communications[J]. New Journal of Physics, 2009, 11(10): 105001.

【19】Choi I, Young R J, Townsend P D. Quantum information to the home[J]. New Journal of Physics, 2011, 13(6): 063039.

【20】Xia T J, Chen D Z, Wellbrock G, et al. In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels[C]. Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, 2006: OTuJ7.

【21】Eraerds P, Walenta N, Legré M, et al. Quantum key distribution and 1 Gbps data encryption over a single fibre[J]. New Journal of Physics, 2010, 12(6): 063027.

【22】Patel K A, Dynes J F, Choi I, et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber[J]. Physical Review X, 2012, 2(4): 041010.

【23】Patel K A, Dynes J F, Lucamarini M, et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Applied Physics Letters, 2014, 104(5): 051123.

【24】Liu Youming, Wang Chao, Huang Duan, et al. Study of synchronous technology in high-speed continuous variable quantum key distribution system[J]. Acta Optica Sinica, 2015, 35(1): 0106006.
刘友明, 汪 超, 黄 端, 等. 高速连续变量量子密钥分发系统同步技术研究[J]. 光学学报, 2015, 35(1): 0106006.

【25】Kumar R, Qin H, Alléaume R. Coexistence of continuous variable QKD with intense DWDM classical channels[J]. New Journal of Physics, 2015, 17(4): 043027.

【26】Wang C, Huang D, Huang P, et al. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel[J]. Scientific Reports, 2015, 5(65): 33-40.

【27】Huang D, Lin D, Wang C, et al. Continuous-variable quantum key distribution with 1 Mbps secure key rate[J]. Optics Express, 2015, 23(13): 17511-17519.

【28】Liu Weiqi. Hybrid quantum private communication with continuous-variable and discrete-variable signals[D]. Xi′an: Northwest University, 2014.
刘维琪. 连续变量及离散变量混合型量子保密通信研究[D]. 西安: 西北大学, 2014.

【29】Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied Optics, 1982, 21(11): 1950-1955.

【30】Yaman F, Bai N, Zhu B, et al. Long distance transmission in few-mode fibers[J]. Optics Express, 2010, 18(12): 13250-13257.

【31】Randel S, Ryf R, Gnauck A, et al. Mode-multiplexed 6×20-GBd QPSK transmission over 1200-km DGD-compensated few-mode fiber[C]. Optical Fiber Communication Conference, 2012: PDP5C.5.

【32】Ip E, Bai N, Huang Y K, et al. 88×3×112-Gb/s WDM transmission over 50-km of three-mode fiber with inline multimode fiber amplifier[C]. 37th European Conference and Exposition on Optical Communications, 2011: Th.13.C.2.

【33】Shah A R, Hsu R C J, Tarighat A, et al. Coherent optical mimo (COMIMO)[J]. Journal of Lightwave Technology, 2005, 23(8): 2410-2419.

【34】Juarez A A, Bunge C A, Warm S, et al. Perspectives of principal mode transmission in mode-division-multiplex operation[J]. Optics Express, 2012, 20(13): 13810-13824.

【35】Yao Shuchang, Fu Songnian, Zhang Minming, et al. Demodulation and multi-input multi-output equalization for mode division multiplexing system using a novel few-mode fiber[J]. Acta Physica Sinica, 2013, 62(14): 253-260.
姚殊畅, 付松年, 张敏明, 等. 基于少模光纤的模分复用系统多输入多输出均衡与解调[J]. 物理学报, 2013, 62(14): 253-260.

引用该论文

Luo Junwen,Li Yunxia,Shi Lei,Meng Wen,Xu Zhenyu,Xue Yang. Co-Fiber-Transmission Technology for Quantum Signal and Classical Optical Signal Based on Mode Division Multiplexing in Few-Mode Fiber[J]. Laser & Optoelectronics Progress, 2017, 54(2): 022702

罗均文,李云霞,石磊,蒙文,许振宇,薛阳. 基于少模光纤模分复用的量子信号-经典光信号共纤同传技术[J]. 激光与光电子学进展, 2017, 54(2): 022702

被引情况

【1】程康,周媛媛,王欢. 测量设备无关的经典-量子信号共纤传输方案. 激光与光电子学进展, 2019, 56(8): 82701--1

【2】王欢,周媛媛,虞味. 量子-经典混合光网络波长分配优化方案. 量子电子学报, 2020, 37(1): 43-49

【3】黄超,李云霞,蒙文,武天雄. 基于模分复用的量子密钥分发系统性能分析. 激光与光电子学进展, 2020, 57(15): 150604--1

【4】黄超,李云霞,蒙文,武天雄. 模式耦合对模分复用同传系统中量子误码率的影响. 光学学报, 2020, 40(4): 406002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF