首页 > 论文 > 激光与光电子学进展 > 54卷 > 2期(pp:21102--1)

并行可见光焦平面压缩成像系统

Compressive Imaging System Based on Parallel Visible Light Focal Plane

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于压缩感知的理论, 设计了一个并行可见光焦平面压缩成像系统, 将自然图像进行分块压缩成像。由于选用的是面阵探测器, 所以整幅图像的每一个小块图像的采样是同时进行的。成像实验部分, 选用0、1二值随机伯努利矩阵作为测量矩阵, 重构出了不同的目标图像。实验结果表明, 这种分块压缩成像的方式可以减少采样次数, 避免由于测量矩阵过大而带来的存储和计算问题, 实物系统十分适合高分辨率成像。

Abstract

Based on the compressed sensing theory, a compressive imaging system with parallel visible light focal plane is proposed. The system reconstructs the original image based on block compressed sensing imaging. Due to the use of a panel detector, every small block of the image is sampled at the same time. In the part of the imaging experiment, 0,1 binary Bernoulli measurement matrices are served as the measurement matrices to reconstruct different target images. Experimental results show that the method of parallel blocked-based compressive imaging system not only decreases the number of sampling, but also aviods a great deal of memory space and calculation because of the excessive measurement matrices. And the proposed imaging system is suitable for high resolution image reconstruction.

广告组1.2 - 空间光调制器+DMD
补充资料

中图分类号:O439

DOI:10.3788/lop54.021102

所属栏目:成像系统

基金项目:国家自然科学基金(61271375)

收稿日期:2016-10-17

修改稿日期:2016-10-24

网络出版日期:--

作者单位    点击查看

欧阳瑶:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081
陈靖:北京理工大学光电学院光电成像技术与系统教育部重点实验室, 北京 100081

联系人作者:欧阳瑶(quintetouyang@163.com)

备注:欧阳瑶(1991-), 女, 硕士研究生, 主要从事压缩成像方面的研究。

【1】Candes E J, Romberg J K, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

【2】Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.

【3】Goyal V K, Fletcher A K, Rangan S. Compressive sampling and lossy compression[J]. IEEE Signal Processing Magazine, 2008, 25(2): 48-56.

【4】Gu Y, Goodman N A, Amit A. Radar target profiling and recognition based on TSI-optimized compressive sensing kernel[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3194-3207.

【5】Herman M A, Strohmer T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.

【6】Varshney K R, etin M, Fisher W, et al. Sparse representation in structured dictionaries with application to synthetic aperture radar[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3548-3561.

【7】Richy J, Friboulet D, Bernard A, et al. Blood velocity estimation using compressive sensing[J]. IEEE Transactions on Medical Imaging, 2013, 32(11): 1979-1988.

【8】Provost J, Lesage F. The application of compressed sensing for photo-acoustic tomography[J]. IEEE Transaction on Medical Imaging, 2009, 28(4): 585-594.

【9】Liu Xiaoyong, Cao Yiping, Lu Pei. Research on optical image encryption technique with compressed sensing[J]. Acta Optica Sinica, 2014, 34(3): 0307002.
刘效勇, 曹益平, 卢 佩. 基于压缩感知的光学图像加密技术研究[J]. 光学学报, 2014, 34(3): 0307002.

【10】Li Juan, Feng Yong, Yang Xuqiang. 3D chaotic encryption scheme for compressed image[J]. Acta Optica Sinica, 2010, 30(2): 399-404.
李 娟, 冯 勇, 杨旭强. 压缩图像的三维混沌加密算法[J]. 光学学报, 2010, 30(2): 399-404.

【11】Zhang Shuo, Wang Jie, Wang Jincheng, et al. Simple calculation method for three dimensional image base on compressed sensing[J]. Acta Optica Sinica, 2013, 33(1): 0111004.
张 硕, 王 杰, 王金成, 等. 基于压缩感知的三维物体成像的简单计算方法[J]. 光学学报, 2013, 33(1): 0111004.

【12】Marcia R F, Willett R M. Compressive coded aperture video reconstruction[C]. 16th European Signal Processing Conference, 2008: 1-5.

【13】Duarte M, Davenport M A, Takhar D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.

【14】Ke J, Lam E Y. Object reconstruction in block-based compressive imaging[J]. Opt Express, 2012, 20(20): 22102-22117.

【15】Mahalanobis A, Shilling R, Murphy R, et al. Recent results of medium wave infrared compressive sensing[J]. Applied Optics, 2014, 53(34): 8060-8070.

【16】Chen H, Asif M S, Sankaranarayanan A C, et al. FPA-CS: focal plane array-based compressive imaging in short-wave infrared[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 2358-2366.

【17】Wang J, Gupta M, Sankaranarayanan A C. LiSens-A scalable architecture for video compressive sensing[C]. IEEE International Conference on Computational Photography, 2015: 1-9.

【18】Chen S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM J Sci Comput, 1998, 20(1): 33-61.

【19】Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse over complete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.

【20】Tropp J A, Gilbert A C, et al. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.

【21】Mohimani H, Babaie-Zadeh M, Jutten C. Fast sparse representation based on smoothed l0 norm[C]. Proceedings of 7th International Conference on Independent Component Analysis and Signal Separation, 2007: 389-396.

【22】Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed norm[J]. IEEE Transaction on Signal Processing, 2009, 57(1): 289-301.

【23】Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2419-2434.

【24】Gan L. Block compressed sensing of natural images[J]. 15th Conference on Digital Signal Processing, 2007: 403-406.

【25】Brownrigg D R K. The weighted median filter[J]. Communications of the ACM, 1984, 27(8): 807-818.

引用该论文

Ouyang Yao,Chen Jing. Compressive Imaging System Based on Parallel Visible Light Focal Plane[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021102

欧阳瑶,陈靖. 并行可见光焦平面压缩成像系统[J]. 激光与光电子学进展, 2017, 54(2): 021102

被引情况

【1】张淑芳,朱彬华,李 瑞. 基于CCD图像传感器的压缩成像方法. 激光与光电子学进展, 2017, 54(11): 111103--1

【2】刘焕淋,王储君,陈勇. 基于分段自适应采样压缩感知的FBG光谱压缩与重构方法. 中国激光, 2018, 45(3): 306004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF