首页 > 论文 > 光学学报 > 37卷 > 2期(pp:230002--1)

新型高光谱图像快速实时目标检测与分类方法

Novel Fast Real-Time Target Detection and Classification Algorithms for Hyperspectral Imagery

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对逐像元处理的高光谱图像实时线性约束最小方差(LCMV)检测与分类算法计算量大、运行速度慢的问题,在LCMV检测与分类算法的基础上,提出了两种逐行的实时LCMV目标检测与分类算法。首先对LCMV算法进行了因果化,提出了逐行处理的实时因果LCMV(CR-LCMV)检测与分类算法,再利用Woodbury引理,推导出了逐行处理的实时递归因果LCMV(RCR-LCMV)检测与分类算法。实验结果表明:与LCMV检测与分类算法相比,两种新型实时算法均能在不影响检测精度的情况下实时地检测目标与对目标进行分类,且所需的数据存储空间大大降低;与逐像元处理的实时LCMV算法相比,两种新型实时算法可获得几乎与之相同的检测精度,计算复杂度大大降低,实时处理能力更强,算法在运行时间上具有明显的优越性。

Abstract

The real-time linearly constrained minimum variance(LCMV)detection and classification method for hyperspectral imagery is based on the pixel-by-pixel processing, which has the problems of large amount of computation and slow running speed. Two novel real-time LCMV detection and classification methods based on the LCMV detection and classification method are proposed. Firstly, the LCMV algorithm is carried out causality, a causal real-time LCMV (CR-LCMV) detection and classification method based on the line-by-line processing is proposed. Then, by using Woodbury lemma, a recursive causal real-time LCMV (RCR-LCMV) detection and classification method based on the line-by-line processing is derived. Experimental results show that compared with the traditional LCMV detection and classification algorithm, the two novel real-time algorithms can detect and classify targets in real-time without affecting the detection accuracy, and the required data storage space is greatly reduced. Compared with the real-time LCMV algorithm based on the pixel-by-pixel processing, the real-time processing ability of the two novel real-time algorithms is much strong without affecting the classification accuracy, which has obvious superiority in running time.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP751.1

DOI:10.3788/aos201737.0230002

所属栏目:光谱学

基金项目:国家自然科学基金(61201415)

收稿日期:2016-08-22

修改稿日期:2016-10-10

网络出版日期:--

作者单位    点击查看

付立婷:中国农业大学信息与电气工程学院, 北京 100083
邓 河:中国农业大学信息与电气工程学院, 北京 100083
刘春红:中国农业大学信息与电气工程学院, 北京 100083

联系人作者:付立婷(302691392@qq.com)

备注:付立婷(1992-),女,硕士研究生,主要从事高光谱遥感图像目标探测方面的研究。

【1】Tang Yi, Wan Jianwei, Nian Yongjian. Distributed near lossless compression of hyperspectral images[J]. Acta Optica Sinica, 2015, 35(3): 0310001.
汤 毅, 万建伟, 粘永健. 高光谱图像的分布式近无损压缩[J]. 光学学报, 2015, 35(3): 0310001.

【2】Chen S Y, Wang Y, Wu C C, et al. Real-time causal processing of anomaly detection for hyperspectral imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1511-1534.

【3】Zhao C, Wang Y, Qi B, et al. Global and local real-time anomaly detectors for hyperspectral remote sensing imagery[J]. Remote Sensing, 2015, 7(4): 3966-3985.

【4】Zhao Chunhui, You Wei, Qi Bin, et al. Real-time anomaly detection algorithm for hyperspectral remote sensing by using recursive polynomial kernel function[J]. Acta Optica Sinica, 2016, 36(2): 0228002.
赵春晖, 尤 伟, 齐 滨, 等. 采用多项式递归核的高光谱遥感异常实时检测算法[J]. 光学学报, 2016, 36(2): 0228002.

【5】Wang Y, Schultz R, Chen S, et al. Progressive constrained energy minimization for subpixel detection[C]. Proceedings of SPIE, 2013, 8743: 874321.

【6】Yang B, Yang M, Gao L, et al. A dual mode FPGA implementation of real-time target detection for hyperspectral imagery[C]. 2014 Third International Workshop on Earth Observation and Remote Sensing Applications, IEEE, 2014: 340-344.

【7】Zhao Chunhui, Wang Yulei, Li Xiaohui. A real-time anomaly detection algorithm for hyperspectral imagery based on causal processing[J]. Journal of Infrared and Millimeter Waves, 2015, 34(1): 114-121.
赵春晖, 王玉磊, 李晓慧. 一种新型高光谱实时异常检测算法[J]. 红外与毫米波学报, 2015, 34(1): 114-121.

【8】Chang C I, Ren H. Linearly constrained minimum variance beamforming approach to target detection and classification for hyperspectral imagery[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, 1999, 2(6): 1241-1243.

【9】Ye Jianjie. Application of an improved LCMV algorithm in GPS anti-jamming[J]. Electronic Science and Technology, 2013, 26(2): 156-158.
叶建杰. 一种应用于GPS抗干扰的改进LCMV算法[J]. 电子科技, 2013, 26(2): 156-158.

【10】Chang C I, Ren H, Chiang S S. Real-time processing algorithms for target detection and classification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 760-768.

【11】Song Y, Liu C H, Deng Q. Linearly constrained minimum variance-based real-time hyperspectral image target detection algorithm[J]. Sensor Letters, 2014, 12(3): 509-515.

【12】Frost O L. An algorithm for linearly constrained adaptive array processing[J]. Proceedings of the IEEE, 1972, 60(8): 926-935.

【13】Wang J, Chang C I. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2601-2616.

【14】Chang Y C, Ren H, Chang C I, et al. How to design synthetic images to validate and evaluate hyperspectral imaging algorithms[C]. Proceedings of the SPIE, 2008, 6966: 69661P.

【15】Chang C I. Multiparameter receiver operating characteristic analysis for signal detection and classification[J]. IEEE Sensors Journal, 2010, 10(3): 423-442.

引用该论文

Fu Liting,Deng He,Liu Chunhong. Novel Fast Real-Time Target Detection and Classification Algorithms for Hyperspectral Imagery[J]. Acta Optica Sinica, 2017, 37(2): 0230002

付立婷,邓 河,刘春红. 新型高光谱图像快速实时目标检测与分类方法[J]. 光学学报, 2017, 37(2): 0230002

被引情况

【1】王小龙,王峰,徐睿,刘晓,袁宏武. 基于正交双偏振的分孔径同时式高光谱偏振成像系统设计. 激光与光电子学进展, 2018, 55(3): 31104--1

【2】于纯妍,赵猛,宋梅萍,李森,王玉磊. 基于目标约束与谱空迭代的高光谱图像分类方法. 光学学报, 2018, 38(6): 628003--1

【3】李非燕,霍宏涛,白杰,王巍. 基于稀疏表示和自适应模型的高光谱目标检测. 光学学报, 2018, 38(12): 1228004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF