首页 > 论文 > 中国激光 > 44卷 > 2期(pp:201013--1)

基于分布式传感的全光纤放大器增益光纤纤芯温度测量

Temperature Measurement for Gain Fiber Core in All-Fiber Amplifier Based on Distributed Sensing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在高功率光纤激光器中,增益光纤的热效应是限制激光功率提高的重要因素之一。传统的温度测量方法只能测量到增益光纤的表面温度,无法得到增益光纤内部不同位置的温度。采用分布式光频域反射(OFDR)技术测量全光纤放大器中增益光纤纤芯的温度。对采用OFDR技术得到的温度测量结果进行了标定,验证了OFDR测量工作状态下放大器内增益光纤温度的准确性。测量了输出功率为6 W的全光纤放大器内增益光纤纤芯的温度分布,测量结果与理论相吻合。这种测温方法为未来高功率光纤激光器的温度监测提供参考。

Abstract

Thermal effect of the gain fiber is one of the main factors limiting the power improvement of high power fiber amplifiers. Using traditional temperature measurement methods, we can only obtain the surface temperature of fiber while the core temperature cannot be detected. In this paper, the temperature of the gain fiber core in an all-fiber amplifier is measured by optical frequency domain reflectometry (OFDR). Firstly, the temperature measurement results by OFDR are calibrated and the measuring accuracy of the gain fiber temperature is verified when the amplifier is in operation. Then, the temperature distribution of the gain fiber core in the all-fiber amplifier is measured when the output power is 6 W and the results agree with the current theoretical results. The temperature measurement method proposed can provide a reference for the temperature monitoring in high power fiber lasers in the future.

广告组5 - 光束分析仪
补充资料

中图分类号:O437

DOI:10.3788/cjl201744.0201013

所属栏目:激光器件与激光物理

基金项目:国家自然科学基(61505260,61605245)、科技部重点研发计划(2016YFB0402200)

收稿日期:2016-09-13

修改稿日期:2016-10-15

网络出版日期:--

作者单位    点击查看

周子超:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
王小林:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
张汉伟:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
粟荣涛:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
韩 凯:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
周 朴:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
许晓军:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073

联系人作者:周子超(zhouzichao@nudt.edu.cn)

备注:周子超(1992—),男,硕士研究生,主要从事高功率光纤激光器方面的研究。

【1】Wang Xiaolin, Leng Jinyong, Du Wenbo, et al. 275 W MOPA all fiber narrow linewidth ytterbium doped fiber laser[J]. Chinese J Lasers, 2011, 38(3): 0308001.
王小林, 冷进勇, 杜文博, 等. 275 W MOPA结构全光纤窄线宽掺镱光纤激光器[J]. 中国激光, 2011, 38(3): 0308001.

【2】王小林, 龚智群, 周 朴, 等. 国产全光纤激光器实现525 W高功率输出[J]. 中国激光, 2012, 39(4): 0408007.

【3】Wang Xiaolin, Tao Rumao, Zhang Hanwei, et al. 1 kilowatt single-end pumped all-fiber laser oscillator with good beam quality and high stability [J].Chinese J Lasers, 2014, 41(11): 1105001.
王小林, 陶汝茂, 张汉伟, 等. 1 kW单端抽运、高光束质量、高稳定性全光纤激光振荡器[J]. 中国激光, 2014, 41(11): 1105001.

【4】Wang Xiaolin, Zhang Hanwei, Tao Rumao, et al. Laser diode pumped 4.1 kW all-fiber laser with master oscillator power amplification configuration[J]. Chinese J Lasers, 2016, 43(5): 0502002.
王小林, 张汉伟, 陶汝茂, 等. LD抽运主振荡功率放大结构4.1 kW 全光纤激光器[J]. 中国激光, 2016, 43(5): 0502002.

【5】Zervas M N, Codemard C A. High power fiber lasers: a review [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 0904123.

【6】Fan Y Y, He B, Zhou J, et al. Thermal effects in kilowatt all-fiber MOPA[J]. Optics Express, 2011, 19(16): 15162-15172.

【7】Wang Xiaolin, Zhou Pu, Xiao Hu, et al. Narrow linewidth all-fiber laser with 666 W power output[J]. High Power Laser and Particle Beams, 2012, 24(6): 1261-1262.
王小林, 周 朴, 肖 虎, 等. 窄线宽全光纤激光器实现666 W高功率输出[J]. 强激光与粒子束, 2012, 24(6): 1261-1262.

【8】Ward B, Robin C, Dajani I. Origin of thermal modal instabilities in large mode area fiber amplifiers[J]. Optics Express, 2012, 20(10): 11407-11422.

【9】Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers[C]. SPIE, 2014, 8961: 89611R.

【10】Wang X L, Zhou P, Leng J Y, et al. A 330-W single-frequency retrievable multi-tone monolithic fiber amplifier[J]. Chinese Physics B, 2013, 22(4): 044205.

【11】Wang X, Leng J, Zhou P, et al. 1.8-kW simultaneous spectral and coherent combining of three-tone nine-channel all-fiber amplifier array[J]. Applied Physics B: Lasers and Optics, 2012, 107(3): 785-790.

【12】Wang X L, Zhou P, Xiao H, et al. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration[J]. Laser Physics Letters, 2012, 9(8): 591-595.

【13】Froggatt M E, Gifford D K, Kreger S, et al. Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry[J]. Journal of Lightwave Technology, 2006, 24(11): 4149-4154.

【14】Zhou Zichao, Wang Xiaolin, Su Rongtao, et al. Application of distributed fiber sensing in fiber lasers[J]. Laser & Optoelectronics Progress, 2016, 53(8): 080006.
周子超, 王小林, 粟荣涛, 等. 分布式光纤传感在光纤激光中的应用研究[J]. 激光与光电子学进展, 2016, 53(8): 080006.

【15】Beier F, Heinzig M, Haarlammert N, et al. In situ temperature measurement in high power fiber amplifiers[C]. ECLEO-EQEC, 2015: CJ-10-6.

【16】Beier F, Heinzig M, Walbaum T, et al. Determination of thermal load from core temperature measurements in single mode ytterbium-doped fiber amplifiers[C]. ECLEO-EQEC, 2015: ATh2A.23

【17】Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single-mode fiber[J]. Applied Physics Letter, 1981, 39(9): 693-695.

引用该论文

Zhou Zichao,Wang Xiaolin,Zhang Hanwei,Su Rongtao,Han Kai,Zhou Pu,Xu Xiaojun. Temperature Measurement for Gain Fiber Core in All-Fiber Amplifier Based on Distributed Sensing[J]. Chinese Journal of Lasers, 2017, 44(2): 0201013

周子超,王小林,张汉伟,粟荣涛,韩 凯,周 朴,许晓军. 基于分布式传感的全光纤放大器增益光纤纤芯温度测量[J]. 中国激光, 2017, 44(2): 0201013

被引情况

【1】朱金顶,程凌浩,周黎明,刘伟民. 激光频率稳定性对布里渊分布式传感系统的影响. 激光与光电子学进展, 2019, 56(17): 170624--1

【2】蒋娜,吴静红,刘浩,施斌,刘苏平,魏广庆. 锚固增强传感光缆-土体耦合性的试验研究. 中国激光, 2019, 46(11): 1110001--1

【3】吴静红,刘浩,杨鹏,蒋娜. 基于光频域反射计技术的混凝土裂缝识别与监测. 激光与光电子学进展, 2019, 56(24): 241201--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF