首页 > 论文 > 中国激光 > 44卷 > 2期(pp:201002--1)

高功率光纤激光光谱合成技术的研究进展

Research Progress on Spectral Beam Combining Technology of High-Power Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

受热损伤和非线性效应等因素的制约,单个光纤激光器的单模输出功率受到限制。将多个光纤激光器的输出通过一定的方式进行光束合成,是实现更高功率激光输出的必然选择。介绍了光谱合成技术的发展历程和研究现状,给出了几类常见光谱合成系统的基本原理、关键要素和优缺点。介绍了中国科学院上海光学精密机械研究所在窄线宽光纤激光及其光谱合成方面的最新进展, 并对高功率光纤激光光谱合成技术的发展前景进行了展望。

Abstract

Constrained by such factors as thermal damages and nonlinear effects, the single-mode output power of one single fiber lasers is limited. Spectral beam combining technology to integrate different laser outputs based on some means is believed to be an inevitable choice to achieve high power laser output. The development process and current status of spectral beam combing technology are introduced and the basic principle, key factors, advantages and disadvantages of several common kinds of spectral beam combing systems are presented. The latest progresses on narrow linewidth high power fiber laser and its spectral beam combining in Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, are also introduced, and the development prospects of spectral beam combining technology of high power fiber lasers are prospected.

广告组5 - 光束分析仪
补充资料

中图分类号:TN248.1

DOI:10.3788/cjl201744.0201002

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金 (U1330134,61308024)、科技部重点专项(2016YFB0402201)、上海市自然科学基金(16ZR1440100,16ZR1440200)、江苏省科技支撑计划(BE2014001)、江苏省重点研发计划(BE2016005-4)

收稿日期:2016-09-14

修改稿日期:2016-11-07

网络出版日期:--

作者单位    点击查看

郑 也:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
杨依枫:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
赵 翔:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
公维超:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
柏 刚:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
张璟璞:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
刘 恺:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
陈晓龙:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
赵 纯:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
漆云凤:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
晋云霞:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
何 兵:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800南京先进激光技术研究院, 江苏 南京 210038
周 军:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800南京先进激光技术研究院, 江苏 南京 210038南京中科神光科技有限公司, 江苏 南京 210038

联系人作者:郑也(zhengye.no1@163.com)

备注:郑 也(1989—),男,博士研究生,主要从事高功率光纤激光光谱合成技术方面的研究。

【1】Paschotta R, Nilsson J, Tropper A C, et al. Ytterbium-doped fiber amplifers[J]. IEEE Journal of Quantum Electronics, 1997, 33(7): 1049-1056.

【2】Tünnermann A, Schreiber T, Rser F, et al. The renaissance and bright future of fibre lasers[J]. Journal of Physics B, 2005, 38: S681-S693.

【3】Limpert J, Rser F, Klingebiel S, et al. The rising power of fiber lasers and amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 537-545.

【4】Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.

【5】Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Optics Express, 2011, 19(11): 10180-10192.

【6】Eidam T, Wirth C, Jauregui C, et al. Experimental observation of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

【7】Bochove E. Theory of spectral beam combining of fiber lasers[J]. IEEE Journal of Quantum Electronics, 2002, 38(5): 432-445.

【8】Augst S J, Goyal A K, Aggarwal R L, et al. Wavelength beam combining of ytterbium fiber lasers[J]. Optics Letters, 2003, 28(5): 331-333.

【9】Liu A P, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[C]. SPIE, 2004, 5335: 81-88.

【10】Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577.

【11】Augst S J, Ranka J K, Fan T Y, et al. Beam combining of ytterbium fiber amplifiers[J]. Journal of the Optical Society of America B, 2007, 24(8): 1707-1715.

【12】Sprangle P, Ting A, Penano J, et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 45(2): 138-148.

【13】Noordegraaf D, Maack M D, Skovgaard P M W, et al. All-fiber 7×1 signal combiner for incoherent laser beam combining[C]. SPIE, 2011, 7914: 79142L.

【14】Swanson G J, Leger J R, Holz M. Aperture filling of phase-locked laser arrays[J]. Optics Letters, 1987, 12(4): 245-247.

【15】He B, Lou Q, Zhou J, et al. High power coherent beam combination from two fiber lasers[J]. Optics Express, 2006, 14(7): 2721-2726.

【16】Cheung E C, Ho J G, Goodno G D, et al. Diffractive-optics-based beam combination of a phase-locked fiber laser array[J]. Optics Letters, 2008, 33(4): 354-356.

【17】Goodno G D, McNaught S J, Rothenberg J E, et al. Active phase and polarization locking of a 1.4 kW fiber amplifier[J]. Optics Letters, 2010, 35(10): 1542-1544.

【18】Zhou P, Ma Y, Wang X L, et al. Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm[J]. Optics Letters, 2009, 34(19): 2939-2941.

【19】Yu C X, August S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 2011, 36(14): 2686-2688.

【20】Ma P, Tao R, Wang X, et al. Coherent polarization beam combination of four mode-locked fiber MOPAs in picosecond regime[J]. Optics Express, 2014, 22(4): 4123-4130.

【21】Redmond S M, Ripin D J, Yu C X, et al. Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam[J]. Optics Letters, 2012, 37(14): 2832-2834.

【22】Flores A, Dajani I, Holten R, et al. Multi-kilowatt diffractive coherent combining of pseudorandom-modulated fiber amplifiers[J]. Optical Engineering, 2016, 55(9): 096101.

【23】Lhermite J, Desfarges-Berthelemot A, Kermene V, et al. Passive phase locking of an array of four fiber amplifiers by an all-optical feedback loop[J]. Optics Letters, 2007, 32(13): 1842-1844.

【24】Liu H, He B, Zhou J, et al. Coherent beam combination of two nanosecond fiber amplifiers by all-optical feedback loop[J]. Optics Letters, 2012, 37(18): 3885-3887.

【25】Yang Y, Hu M, He B, et al. Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source[J]. Optics Letters, 2013, 38(6): 854-856.

【26】Yang Y, Liu H, Zheng Y, et al. Dammann-grating-based passive phase locking by an all-optical feedback loop[J]. Optics Letters, 2014, 39(3): 708-710.

【27】Klingebiel S, Rser F, Orta B, et al. Spectral beam combining of Yb-doped fiber lasers with high efficiency[J]. Journal of the Optical Society of America B, 2007, 24(8): 1716-1720.

【28】Loftus T H, Thomas A M, Hoffman P R, et al. Spectrally beam-combined fiber lasers for high-average-power applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 487-497.

【29】Loftus T H, Liu A P, Hoffman P R, et al. 258 W of spectrally beam combined power with near-diffraction limited beam quality[C]. SPIE, 2006, 6102: 61020S.

【30】Schreiber T, Wirth C, Schmidt O, et al. Incoherent beam combining of continuous-wave and pulsed Yb-doped fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 354-360.

【31】Cook C C, Fan T Y. Spectral beam combining of Yb-doped fiber lasers in an external cavity[C]. Advanced Solid State Lasers, 1999, 26: 163-166.

【32】Ciapurin I V, Glebov L B, Glebova L N, et al. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating[C]. SPIE, 2003, 4974: 209-219.

【33】Andrusyak O, Smirnov V, Venus G, et al. Spectral combining and coherent coupling of lasers by volume Bragg gratings[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 344-353.

【34】Loftus T H, Liu A P, Hoffman P R, et al. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality[J]. Optics Letters, 2007, 32(4): 349-351.

【35】Sevian A, Andrusyak O, Ciapurin I, et al. Efficient power scaling of laser radiation by spectral beam combining[J]. Optics Letters, 2008, 33(4): 384-386.

【36】Schmidt O, Wirth C, Tsybin I. Average power of 1.1 kW from spectrally combined, fiber-amplified, nanosecond-pulsed sources[J]. Optics Letters, 2009, 34(10): 1567-1569.

【37】Wirth C, Schmidt O, Tsybin I, et al. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers[J]. Optics Express, 2009, 17(3): 1178-1183.

【38】Schmidt O, Wirth C, Nodop D, et al. Spectral beam combination of fiber amplified ns-pulses by means of interference filters[J]. Optics Express, 2009, 17(25): 22974-22982.

【39】Madasamy P, Jander D R, Brooks C D, et al. Dual-grating spectral beam combination of high-power fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 337-343.

【40】Schmidt O, Andersen T V, Limpert J, et al. 187 W, 3.7 mJ from spectrally combined pulsed 2 ns fiber amplifiers[J]. Optics Letters, 2009, 34(3): 226-228.

【41】Wirth C, Schmidt O, Tsybin I, et al. High average power spectral beam combining of four fiber amplifiers to 8.2 kW[J]. Optics Letters, 2011, 36(16): 3118-3120.

【42】Ott D, Divliansky I, Anderson B, et al. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating[J]. Optics Express, 2013, 21(24): 29620-29627.

【43】Honea E, Afzal R S, Savage-Leuchs M, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[C]. SPIE, 2013, 8601: 860115.

【44】Drachenberg D R, Andrusyak O, Venus G, et al. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers[J]. Applied Optics, 2014, 53(6): 1242-1246.

【45】Honea E, Afzal R S, Savage-Leuchs M, et al. Advances in fiber laser spectral beam combining for power scaling[C]. SPIE, 2015, 9730: 97300Y.

【46】Liang Xiaobao, Chen Liangming, Li Chao, et al. High average power spectral beam combining employing volume Bragg gratings[J]. High Power Laser and Particle beams, 2015, 27(7): 071012.
梁小宝, 陈良明, 李 超, 等. 体布拉格光栅用于高功率光谱组束的研究[J]. 强激光与粒子束, 2015, 27(7): 071012.

【47】Ma Yi, Yan Hong, Tian Fei, et al. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output[J]. High Power Laser and Particle beams, 2015, 27(4): 040101.
马 毅, 颜 宏, 田 飞, 等. 光纤激光共孔径光谱合成实现5 kW高效优质输出[J]. 强激光与粒子束, 2015, 27(4): 040101.

【48】Ma Yi, Yan Hong, Peng Wanjing, et al. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers[J]. Chinese J Lasers, 2016, 43(9): 0901009.
马 毅, 颜 宏, 彭万敬, 等. 基于多路窄线宽光纤激光的9.6 kW共孔径光谱合成光源[J]. 中国激光, 2016, 43(9): 0901009.

【49】Zheng Y, Yang Y F, Wang J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071.

【50】Daneu V, Sanchez A, Fan T Y, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 2000, 25(6): 405-407.

【51】Chann B, Huang R K, Missaggia L J, et al. Near-diffraction-limited diode laser arrays by wavelength beam combining[J]. Optics Letters, 2005, 30(16): 2104-2106.

【52】Gopinath J T, Chann B, Fan T Y, et al. 1450-nm high-brightness wavelength-beam combined diode laser array[J]. Optics Express, 2008, 16(13): 9405-9410.

【53】Dajani I, Zeringur C, Lu C, et al. Stimulated Brillouin scattering suppression through laser gain competition: Scalability to high power[J]. Optics Letters, 2010, 35(18): 3114-3116.

【54】Dajani I, Zeringue C, Shay T M. Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(2): 406-414.

【55】Mermelstein M D, Andrejco M J, Fini J, et al. SBS suppression and acoustic management for high-power narrow-linewidth fiber lasers and amplifiers[C]. SPIE, 2010, 7580: 75801G.

【56】Suradeepa V R. Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise[J]. Optics Express, 2013, 21(4): 4677-4687.

【57】Gray S, Liu A, Walton D T, et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier[J]. Optics Express, 2007, 15(25): 17044-17050.

【58】Jeong Y, Nilsson J, Sahu J K, et al. Power scaling of single frequency Ytterbium-doped fiber master oscillator power amplifier sources up to 500 W[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 546-551.

【59】Goodno G D, Book L D, Rothenberg J E. Low-phase-noise, single-frequency, single-mode 608 W thulium fiber amplifier[J]. Optics Letters, 2009, 34(8): 1204-1206.

【60】Khitrov V, Farley K, Leveille R, et al. kW level narrow linewidth Yb fiber amplifiers for beam combining[C]. SPIE, 2010, 7686: 76860A.

【61】Engin D, Lu W, Akbulut M, et al. 1 kW cw Yb-fiber-amplifier with <0.5 GHz linewidth and near diffraction limited beam-quality, for coherent combining application[C]. SPIE, 2011, 7914: 791407.

【62】Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power[J]. Optics Letters, 2014, 39(3): 666-669.

【63】Flores A, Robin C, Lanari A, et al. Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers[J]. Optics Express, 2014, 22(15): 17735-17744.

【64】Nold J, Strecker M, Liem A, et al. Narrow linewidth single mode fiber amplifier with 2.3 kW average power[J]. Optics Express, 2016, 24(6): 6011-6020.

【65】Yagodkin R, Platonov N, Yusim A, et al. >1.5 kW narrow linewidth CW diffraction-limited fiber amplifier with 40 nm bandwidth[C]. SPIE, 2016, 9728: 972807.

【66】Naderi N A, Flores A, Anderson B M, et al. Beam combinable, kilowatt, all-fiber amplifier based on phase-modulated laser gain competition[J]. Optics Letters, 2016, 41(17): 3964-3967.

【67】Naderi N A, Dajani I, Flores A. High-efficiency, kilowatt 1034 nm all-fiber amplifier operating at 11 pm linewidth[J]. Optics Letters, 2016, 41(5): 1018-1021.

【68】Beier F, Hupel C, Nold J, et al. Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier[J]. Optics Express, 2016, 24(6): 6011-6020.

【69】Ma P F, Tao R M, Su R T, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.

【70】Liu G B, Yang Y F, Wang J H, et al. Stimulated Brillouin scattering enhancement factor improvement in 11.6 GHz linewidth, 1.5 kW Yb-doped fiber amplifier[J]. Chinese Physics Letters, 2016, 33(7): 074207.

【71】杨依枫, 沈 辉, 陈晓龙, 等. 全光纤化高效率、窄线宽光纤激光器实现2.5 kW近衍射极限输出[J]. 中国激光, 2016, 43(4): 0419004.

【72】von Elm R, Marois C. Beam-combiner for fiber-delivered laser-beams of different wavelengths: US8599487[P]. 2013-12-03.

【73】Chang Y L, Kim B K, Sang S H, et al. Multi beam laser apparatus: US7991037[P]. 2011-08-02.

【74】Gold R S, Jachimowicz K E. Beam combining/splitter cube prism for color polarization: US5067799[P]. 1991-11-26.

【75】Pickering R D. Beam combining prism: US2983183[P]. 1961-05-09.

【76】Perry M D, Boyd R D, Britten J A, et al. High-efficiency multilayer dielectric diffraction gratings[J]. Optics Letters, 1995, 20(8): 940-942.

【77】Shore B W, Perry M D, Britten J A, et al. Design of high-efficiency dielectric reflection gratings[J]. Journal of the Optical Society of America A, 1997, 14(5): 1124-1136.

引用该论文

Zheng Ye,Yang Yifeng,Zhao Xiang,Gong Weichao,Bai Gang,Zhang Jingpu,Liu Kai,Chen Xiaolong,Zhao Chun,Qi Yunfeng,Jin Yunxia,He Bing,Zhou Jun. Research Progress on Spectral Beam Combining Technology of High-Power Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201002

郑 也,杨依枫,赵 翔,公维超,柏 刚,张璟璞,刘 恺,陈晓龙,赵 纯,漆云凤,晋云霞,何 兵,周 军. 高功率光纤激光光谱合成技术的研究进展[J]. 中国激光, 2017, 44(2): 0201002

被引情况

【1】程雪,王建立,刘昌华. 高能光纤激光器光束合成技术. 红外与激光工程, 2018, 47(1): 103011--1

【2】郑也,李磐,朱占达,刘小溪,王军龙,王学锋. 高功率窄线宽光纤激光器研究进展. 激光与光电子学进展, 2018, 55(8): 80002--1

【3】郭志坚. 长程库仑势在原子阈上电离能谱中的影响. 激光与光电子学进展, 2018, 55(9): 90201--1

【4】柏刚,杨依枫,晋云霞,何兵,周军. 光谱合成激光光束特性的研究进展. 激光与光电子学进展, 2019, 56(4): 40004--1

【5】郭志坚,孙乾. 强场阈上电离中的电子波包干涉图像. 激光与光电子学进展, 2019, 56(8): 80201--1

【6】党文佳,李哲,李玉婷,卢娜,张蕾,田晓,杨慧慧. 高功率连续波掺镱光纤激光器研究进展. 中国光学, 2020, 13(4): 676-694

【7】王彤璐,孙鑫鹏,李晔,史俊锋,徐林,李朝阳,臧彦楠. 19束激光阵列光束相干传输的仿真研究. 激光与光电子学进展, 2019, 56(11): 110601--1

【8】郭志坚,孙乾. 氢原子在少周期强激光场中阈上电离的干涉效应. 激光与光电子学进展, 2019, 56(12): 120202--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF