光纤激光模式不稳定的新现象与新进展
New Progress and Phenomena of Modal Instability in Fiber Lasers
摘要
首先介绍了光纤激光中传统的热致动态模式不稳定的研究现状,然后重点介绍了2016年以来理论预测的准静态模式不稳定;接着,对非热致模式不稳定的研究现状进行介绍,包括电致伸缩模式不稳定和非线性效应与模式不稳定之间的关系。最后,对模式不稳定对高功率光纤放大器的功率限制进行了总结和分析。
Abstract
The research status of traditional dynamic thermally-induced modal instability in fiber lasers is introduced, and the theoretical predictions of quasi-static modal instability since 2016 are also introduced. Then, the status of non-thermally-induced modal instability, including electrostriction effects and nonlinear effects in modal instability, is introduced. Finally, the power scaling limit of modal instability on high power fiber amplifier is summarized and analyzed.
中图分类号:TN248
所属栏目:激光器件与激光物理
收稿日期:2016-09-18
修改稿日期:2016-10-08
网络出版日期:--
作者单位 点击查看
陶汝茂:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
王小林:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
周 朴:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
许晓军:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
陆启生:国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
联系人作者:史尘(bigbryant@nudt.edu.cn)
备注:史 尘(1989—),男,博士研究生,主要从事光纤激光器方面的研究。
【1】Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568.
【2】Saraceno C, Emaury F, Diebold A, et al. Trends in high-power ultrafast lasers[C]. SPIE, 2016, 9835: 98350X.
【3】Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.
【4】Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.
【5】Otto H J, Jauregui C, Limpert J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]. SPIE, 2016, 9728: 97280E
【6】Dawson J W, Messerly M J, Beach R J, et al. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power[J]. Optics Express, 2008, 16(17): 13240-13266.
【7】Wirth C, Schreiber T, Rekas M, et al. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier[C]. SPIE, 2010, 7580: 75801H
【8】Smith A V, Smith J J. Overview of a steady-periodic model of modal instability in fiber amplifiers[J]. Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 472-483.
【9】Jauregui C, Limpert J, Tunnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.
【10】Hansen K R, Alkeskjold T T, Broeng J, et al. Thermally induced mode coupling in rare-earth doped fiber amplifiers[J]. Optics Letters, 2012, 37(12): 2382-2384.
【11】Smith A V, Smith J J. Steady-periodic method for modeling mode instability in fiber amplifiers[J]. Optics Express, 2013, 21(3): 2606-2623.
【12】Jauregui C, Otto H J, Limpert J, et al. Mode instabilities in high-power bidirectional fiber amplifiers and lasers[C]. Advanced Solid State Lasers Conference, 2015: ATh2A.24
【13】陶汝茂. 高功率窄线宽近衍射极限光纤激光放大器热致模式不稳定研究[D]. 长沙: 国防科技大学, 2015.
【14】Tao R M, Ma P F, Wang X L, et al. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Phys Lett, 2015(12): 085101.
【15】Smith A V, Smith J J. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers[J]. Optics Express, 2012, 20(22): 24545-24558.
【16】Smith A V, Smith J J. Spontaneous Rayleigh seed for stimulated Rayleigh scattering in high power fiber amplifiers[J]. IEEE Photonics Journal, 2013, 5(5): 7100807.
【17】Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems[J]. Optics Express, 2012, 20(12): 12912-12925.
【19】Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.
【20】Laurila M, Jrgensen M M, Hansen K R, et al. Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability[J]. Optics Express, 2012, 20(5): 5742-5753.
【21】Johansen M M, Laurila M, Maack M D, et al. Frequency resolved transverse mode instability in rod fiber amplifiers[J]. Optics Express, 2013, 21(19): 21847-21856.
【22】Otto H J, Modsching N, Jauregui C, et al. Impact of photodarkening on the mode instability threshold[J]. Optics Express, 2015, 23(12): 15265-15277.
【23】Jansen F, Stutzki F, Otto H J, et al. Thermally induced waveguide changes in active fibers[J]. Optics Express, 2012, 20(4): 3997-4008.
【24】Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722.
【25】Haarlammert N, de Vries O, LiemA, et al. Build up and decay of mode instability in a high power fiber amplifier[J]. Optics Express, 2012, 20(12): 13274-13283.
【26】Tao R M, Ma P F, Wang X L, et al. 1.4 kW all-fiber narrow-linewidth polarization-maintained fiber amplifier[C]. SPIE, 2015, 9255: 92550B.
【27】Otto H J, Stutzki F, Modsching N, et al. 2 kW average power from a pulsed Yb-doped rod-type fiber amplifier[J]. Optics Letters, 2014, 39(22): 6446-6449.
【28】Smith J J, Smith A V. Influence of signal bandwidth on mode instability thresholds of fiber amplifiers[C]. SPIE, 2015, 9344: 93440L.
【29】Tao R M, Ma P F. Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers[J]. Laser Physics Letters, 2015, 12(8): 085101.
【30】Dong L. Stimulated thermal Rayleigh scattering in optical fibers[J]. Optics Express, 2013, 21(3): 2642-2656.
【31】Hu I N, Zhu C, Zhang C, et al. Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers[C]. SPIE, 2013, 8601: 860109.
【32】Tao R M, Ma P, Wang X, et al. Study of wavelength dependence of mode instability based on a semi-analytical model[J]. Journal of Quantum Electronics, 2015, 51(8): 1-6.
【33】Ward B G. Modeling of transient modal instability in fiber amplifiers[J]. Optics Express, 2013, 21(10): 12053-12067.
【34】Smith A V, Smith J J. Mode instability thresholds of fiber amplifiers[C]. SPIE, 2013, 8601: 860108.
【35】Hupel C, Kuhn S, Hein S, et al. MCVD based fabrication of low-NA fibers for high power fiber laser application[C]. Advanced Solid State Lasers Conference, 2015: AM4A.2
【36】Ma P F, Tao R M, Su R T, et al. 1.89 kW all-fiberized and polarization-maintained amplifiers with narrow linewidth and near-diffraction-limited beam quality[J]. Optics Express, 2016, 24(4): 4187-4195.
【37】Naderi S, Dajani I, Madden T, et al. Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations[J]. Optics Express, 2013, 21(13): 16111-16129.
【38】Robin C, Dajani I, Pulford B. Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811W output power[J]. Optics Letters, 2014, 39(3): 666-669.
【39】Hansen K R, Lgsgaard J. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers[J]. Optics Express,2014, 22(9): 11267-11278.
【40】Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation[J]. Optics Express, 2013, 21(13): 15168-15182.
【41】Tao R M, Ma P F. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength[J]. Journal of Optics, 2015, 17(4): 45504.
【42】Ward B. Theory and modeling of photo darkening-induced quasi static degradation in fiber amplifiers[J]. Optics Express,2016, 24(4): 3488-3501.
【43】Lgsgaard J. Static thermo-optic instability in double-pass fiber amplifiers[J]. Optics Express, 2016, 24(12): 13429-13443.
【45】Antipov O, Kuznetsov M, Tyrtyshnyy V, et al. Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers: influence of a backward reflection[C]. SPIE, 2016, 9728: 97280A.
【46】Antipov O, Kuznetsov M, Alekseev D, et al. Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers[J]. Optics Express, 2016, 24(13): 14871-14879.
【47】Wang X L, Zhang H W, Su R T, et al. Experimental comparison of mode instability (MI) in high power fiber oscillator and fiber amplifier[C]. Laser Optics, 2016.
【48】Kuznetsov M S, Antipov O L, Fotiadi A A. et al. Electronic and thermal refractive index changes in Ytterbium-doped fiber amplifiers[J]. Optics Express, 2013, 21(19): 22374-22388.
【49】Lee K H, Lee K, Kim Y, et al. Transverse mode instability induced by stimulated Brillouin scattering in a pulsed single-frequency large-core fiber amplifier[J]. Applied Optics, 2015, 54(2): 189-194.
【50】Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[C]. SPIE, 2014, 8961: 89611R.
【51】Hejaz K, Norouzey A. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 2014, 24(2): 025102.
【52】Yang B L, Zhang H W. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 2016, 18(10): 105803.
【53】Filippov V, Ustimchik V, Chamorovskii Y. et al. Impact of axial profile of the gain medium on the mode instability in lasers: regular versus tapered fibers[C]. European Quantum Electronics Conference, 2015: CJ_10_5
引用该论文
Shi Chen,Tao Rumao,Wang Xiaolin,Zhou Pu,Xu Xiaojun,Lu Qisheng. New Progress and Phenomena of Modal Instability in Fiber Lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201004
史 尘,陶汝茂,王小林,周 朴,许晓军,陆启生. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44(2): 0201004
被引情况
【1】王建军,刘玙,李敏,冯曦,楚秋慧,张春,高聪,陶汝茂,林宏奂,景峰. 光纤激光模式不稳定研究十年回顾与展望. 强激光与粒子束, 2020, 32(12): 121003-121003
【2】周朴. 高平均功率光纤激光技术基础: 模式. 强激光与粒子束, 2018, 30(6): 60201--1
【3】王小林,陶汝茂,杨保来,史尘,张汉伟,周朴,许晓军. 掺镱全光纤激光振荡器横向模式不稳定与受激拉曼散射的关系. 中国激光, 2018, 45(8): 801008--1
【5】谌鸿伟,陶蒙蒙,赵海川,赵柳,栾昆鹏,沈炎龙,黄珂,冯国斌. γ射线作用下光纤激光器的功率特性及热效应分析. 中国激光, 2020, 47(4): 401004--1