首页 > 论文 > 光学学报 > 37卷 > 3期(pp:318004--1)

超分辨定位成像中的像差表征和校正

Aberration Characterization and Correction in Super-Resolution Localization Microscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

超分辨定位成像技术凭借对数千甚至数万张采集的原始图像进行单分子定位及重建, 可以获得几十纳米的超高分辨率, 观察到之前看不到的细胞结构以及生物现象。然而, 在实际的成像过程中, 采集到的图像会受到像差(来源于光学系统的不完美或样品本身的不均匀性)的影响而导致分辨率下降, 甚至会造成错误结果。为此, 定量表征了几种典型像差对超分辨定位成像的影响, 并提出了一种基于样品图像本身的像差校正方法。仿真和实验结果表明, 像差会造成系统点扩展函数的变形以及成像分辨率的下降, 使用基于图像本身的像差校正方法可以恢复图像的成像质量。

Abstract

Super-resolution localization microscopy can achieve the ultra-high spatial resolution up to several nanometers by the single molecule localization and reconstruction from thousands or even tens of thousands of single molecule image, which provides unprecedented opportunities for studying the cell structures and biological phenomenon. However, the aberration (originating from the imperfection of the optical system or the inhomogeneity of the sample itself) distorts the raw images from single molecules, which decreases the final spatial resolution and even results in wrong results. The effects of several representative aberrations on super-resolution localization imaging are quantitatively characterized, and an aberration correction method based on the sample image itself is proposed. Simulation and experimental results show that the aberrations cause distortion of the point spread function and the decrease of the spatial resolution. The image quality can be restored by using the proposed aberration correction method.

投稿润色
补充资料

中图分类号:TH742

DOI:10.3788/aos201737.0318004

所属栏目:“超分辨成像”专题

基金项目:国家自然科学基金(91332103, 81427801)

收稿日期:2016-09-29

修改稿日期:2016-11-21

网络出版日期:--

作者单位    点击查看

赵泽宇:华中科技大学武汉光电国家实验室Britton Chance生物医学光子学研究中心, 湖北 武汉 430074华中科技大学生物医学工程系生物医学光子学教育部重点实验室, 湖北 武汉 430074
张肇宁:华中科技大学武汉光电国家实验室Britton Chance生物医学光子学研究中心, 湖北 武汉 430074华中科技大学生物医学工程系生物医学光子学教育部重点实验室, 湖北 武汉 430074
黄振立:华中科技大学武汉光电国家实验室Britton Chance生物医学光子学研究中心, 湖北 武汉 430074华中科技大学生物医学工程系生物医学光子学教育部重点实验室, 湖北 武汉 430074

联系人作者:赵泽宇(zzyhust0228@126.com)

备注:赵泽宇(1989-), 男, 博士研究生, 主要从事超分辨定位成像技术方面的研究。

【1】Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

【2】Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272.

【3】Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-795.

【4】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782.

【5】Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086.

【6】Huang B, Jones S A, Brandenburg B, et al. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution[J]. Nature Methods, 2008, 5(12): 1047-1052.

【7】Schwertner M, Booth M J, Wilson T. Characterizing specimen induced aberrations for high NA adaptive optical microscopy[J]. Optics Express, 2004, 12(26): 6540-6552.

【8】Hell S, Reiner G, Cremer C, et al. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index[J]. Journal of Microscopy, 1993, 169(3): 391-405.

【9】Quirin S, Pavani S R P, Piestun R. Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions[J]. Proceedings of the National Academy of Sciences, 2012, 109(3): 675-679.

【10】McGorty R, Schnitzbauer J, Zhang W, et al. Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy[J]. Optics Letters, 2014, 39(2): 275-278.

【11】Burke D, Patton B, Huang F, et al. Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy[J]. Optica, 2015, 2(2): 177-185.

【12】Tehrani K F, Xu J, Zhang Y, et al. Adaptive optics stochastic optical reconstruction microscopy (AO-STORM) using a genetic algorithm[J]. Optics Express, 2015, 23(10): 13677-13692.

【13】Booth M, Andrade D, Burke D, et al. Aberrations and adaptive optics in super-resolution microscopy[J]. Microscopy(Oxford), 2015, 64(4): 251-261.

【14】Noll R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211.

【15】Coles B C, Webb S E D, Schwartz N, et al. Characterisation of the effects of optical aberrations in single molecule techniques[J]. Biomedical Optics Express, 2016, 7(5): 1755-1767.

【16】Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne. Single-molecule localization microscopy·software benchmarking[EB/OL]. (2016-08-19)[2016-09-29].http://bigwww.epfl.ch/palm/datasets/index.html?p=usage.

【17】Nieuwenhuizen R P, Lidke K A, Bates M, et al. Measuring image resolution in optical nanoscopy[J]. Nature Methods 2013, 10(6): 557-562.

引用该论文

Zhao Zeyu,Zhang Zhaoning,Huang Zhenli. Aberration Characterization and Correction in Super-Resolution Localization Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 0318004

赵泽宇,张肇宁,黄振立. 超分辨定位成像中的像差表征和校正[J]. 光学学报, 2017, 37(3): 0318004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF