首页 > 论文 > 光学学报 > 37卷 > 3期(pp:0318009--1)

受激发射损耗显微中空心损耗光的光强分布优化研究

Optimization of the Doughnut-Shaped Depletion Spot in Stimulated Emission Depletion Microscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

受激发射损耗显微技术(STED)作为一种远场超分辨显微成像技术, 具有几十纳米甚至几纳米的空间分辨率, 是细胞生物学等研究领域的重要成像工具。圆环形空心损耗光在物镜焦点附近的光场强度分布对STED空间分辨率起决定性作用。在高数值孔径物镜聚焦下, 光场的偏振态会对聚焦光场的强度分布产生显著的影响, 此外, 显微系统的轴外像差会严重破坏空心损耗光焦斑的中心对称性。基于矢量衍射理论, 理论模拟了在高数值孔径物镜聚焦条件下, 入射涡旋光的偏振态和光学系统中的彗差和像散对空心损耗光焦场强度分布的影响。实验上使用纯相位型空间光调制器来校准光学系统相差, 优化变形的损耗光, 利用纳米探针扫描焦点区域, 测量了其焦场强度分布。测量结果与由矢量稍微理论观测的结果一致。

Abstract

Stimulated emission depletion microscopy (STED) is a powerful far-field technique for super-resolution optical imaging with a few tens even a few of nanometer spatial resolution, thus it is extensively used in investigation of cell biology and so on. The spatial resolution of STED highly depends on the intensity distribution of the doughnut-shaped depletion spot, near the objective focus. The polarization state of field has influence on focal intensity focused with high numerical aperture objective. The off-axis aberrations of microscopic system bring serious damage to the central symmetry of doughnut-shaped depletion spot. The influences of different polarization states of incidence vortex beam and aberrations of coma and astigmatism is of the optical system on the intensity profiles of doughnut-shaped depletion spot simulated by using the vectorial diffraction theory. In the experiment, the deformed depletion spot is optimized by utilizing a pure phase spatial light modulator to correct the aberrations of the optical system. A fluorescent nanoparticle is used as a probe to scan the focal region to obtain a high spatial resolution of intensity distribution. The measured results are in good agreement with those predicted by the vectorial diffraction theory.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/aos201737.0318009

所属栏目:“超分辨成像”专题

基金项目:国家自然科学基金leiming@opt.ac.cn(61522511, 11404389, 81427802,11474352)、陕西省自然科学基础研究计划(2016JZ020)

收稿日期:2016-12-02

修改稿日期:2017-01-04

网络出版日期:--

作者单位    点击查看

蔡亚楠:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
汪召军:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
梁言生:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
严绍辉:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
但旦:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
姚保利:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
雷铭:中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119

联系人作者:蔡亚楠(caiyanan@opt.cn)

备注:蔡亚楠(1990-), 女, 博士研究生, 主要从事荧光显微方面的研究。

【1】Rayleigh L. On the theory of optical images, with special reference to the microscope[J]. Journal of the Royal Microscopical Society, 1903, 23(4): 474-482.

【2】Conchello J A, Lichtman J W. Optical sectioning microscopy[J]. Nature Methods, 2005, 2(12): 920-931.

【3】Wicker K, Sindbert S, Heintzmann R. Characterisation of a resolution enhancing image inversion interferometer[J]. Optics Express, 2009, 17(18): 15491-15501.

【4】Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 2009, 78: 993.

【5】Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy[J]. Journal of Cell Biology, 2010, 190(2): 165-175.

【6】Klar T A, Hell S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 1999, 24(14): 954-956.

【7】Westphal V, Rizzoli S O, Lauterbach M A, et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873): 246-249.

【8】Otomo K, Hibi T, Kozawa Y, et al. STED microscopy-super-resolution bio-imaging utilizing a stimulated emission depletion[J]. Microscopy, 2015: dfv036.

【9】Dan D, Yao B, Lei M. Structured illumination microscopy for super-resolution and optical sectioning[J]. Chinese Science Bulletin, 2014, 59(12): 1291-1307.

【10】Sengupta P, van Engelenburg S B, Lippincott-Schwartz J. Superresolution imaging of biological systems using photoactivated localization microscopy[J]. Chemical Reviews, 2014, 114(6): 3189-3202.

【11】Tam J, Merino D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods[J]. Journal of Neurochemistry, 2015, 135(4): 643-658.

【12】Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. OpticsLetters, 1994, 19(11): 780-782.
<
参考文献原文>Ohtake Y, Ando T, Fukuchi N, et al. Universal generation of higher-order multiringed Laguerre-Gaussian beams by using a spatial light modulator[J]. Optics Letters, 2007, 32(11): 1411-1413.

【13】Trk P, Munro P R T. The use of Gauss-Laguerre vector beams in STED microscopy[J]. Optics Express, 2004, 12(15): 3605-3617.

【14】Singh R K, Senthilkumaran P, Singh K. Effect of primary coma on the focusing of a Laguerre-Gaussian beam by a high numerical aperture system; vectorial diffraction theory[J]. Journal of Optics A: Pure and Applied Optics, 2008, 10(7): 075008.

【15】Singh R K, Senthilkumaran P, Singh K. Tight focusing of vortex beams in presence of primary astigmatism[J]. J Opt Soc Am A, 2009, 26(3): 576-588.

【16】Hao X, Kuang C, Wang T, et al. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. Journal of Optics, 2010, 12(11): 115707.

【17】Wolf E, Li Y. Conditions for the validity of the Debye integral representation of focused fields[J]. Optics Communications, 1981, 39(4): 205-210.

【18】Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87.

【19】Kant R. An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: astigmatism and coma[J]. Journal of Modern Optics, 1995, 42(2): 299-320.

【20】Helseth L E. Focusing of atoms with strongly confined light potentials[J]. Optics Communications, 2002, 212(4): 343-352.

【21】Sato S, Kozawa Y. Hollow vortex beams[J]. J Opt Soc Am A, 2009, 26(1): 142-146.

【22】Dorn R, Quabis S, Leuchs G. The focus of light-linear polarization breaks the rotational symmetry of the focal spot[J]. Journal of Modern Optics, 2003, 50(12): 1917-1926.

【23】Iketaki Y, Watanabe T, Bokor N, et al. Investigation of the center intensity of first-and second-order Laguerre-Gaussian beams with linear and circular polarization[J]. Optics Letters, 2007, 32(16): 2357-2359.

【24】Arigovindan M, Sedat J W, Agard D A. Effect of depth dependent spherical aberrations in 3D structured illumination microscopy[J]. Optics Express, 2012, 20(6): 6527-6541.

【25】Singh R K, Senthilkumaran P, Singh K. Effect of primary spherical aberration on high-numerical-aperture focusing of a Laguerre-Gaussian beam[J]. J Opt Soc Am A, 2008, 25(6): 1307-1318.

【26】Vickers J, Burch M, Vyas R, et al. Phase and interference properties of optical vortex beams[J]. J Opt Soc Am A, 2008, 25(3): 823-827.

【27】Jun C, Deng-Feng K, Min G, et al. Generation of optical vortex using a spiral phase plate fabricated in quartz by direct laser writing and inductively coupled plasma etching[J]. Chinese Physics Letters, 2009, 26(1): 014202.

【28】Matsumoto N, Ando T, Inoue T, et al. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators[J]. J Opt Soc Am A, 2008, 25(7): 1642-1651.

【29】Nasse M J, Woehl J C, Huant S. High-resolution mapping of the three-dimensional point spread function in the near-focus region of a confocal microscope[J]. Applied Physics Letters, 2007, 90(3): 031106.

【30】Cole R W, Jinadasa T, Brown C M. Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control[J]. Nature Protocols, 2011, 6(12): 1929-1941.

【31】Gibson S F, Lanni F. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy[J]. J Opt Soc Am A, 1992, 9: 154-166.

【32】Sun B, Salter P S, Booth M J. Effects of aberrations in spatiotemporal focusing of ultrashort laser pulses[J]. J Opt Soc Am A, 2014, 30(4): 765-772.

引用该论文

Cai Yanan,Wang Zhaojun,Liang Yansheng,Yan Shaohui,Dan Dan,Yao Baoli,Lei Ming. Optimization of the Doughnut-Shaped Depletion Spot in Stimulated Emission Depletion Microscopy[J]. Acta Optica Sinica, 2017, 37(3): 0318009

蔡亚楠,汪召军,梁言生,严绍辉,但旦,姚保利,雷铭. 受激发射损耗显微中空心损耗光的光强分布优化研究[J]. 光学学报, 2017, 37(3): 0318009

被引情况

【1】李秉研,熊晗. 像差对三镜型线聚焦滤波器效能影响的数值研究. 光学学报, 2019, 39(8): 822002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF