首页 > 论文 > 中国激光 > 44卷 > 3期(pp:306002--1)

面向分布式光纤拉曼测温的新型温度解调方法

Temperature Demodulation Method for Distributed Fiber Raman Temperature Measurement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高分布式光纤拉曼测温系统的测量速度和测量准确度,提出了一种自补偿光纤损耗及光纤色散的温度解调方法,并进行了实验验证。该方法对斯托克斯与反斯托克斯后向散射信号进行了损耗修正,避免了测温前对整条传感光纤进行定标处理的过程,减小了系统的运行时间;采用色散补偿平移算法对斯托克斯后向散射信号的位置进行修正,获得了与反斯托克斯后向散射信号相同位置处的斯托克斯后向散射信号的强度,降低了光纤色散对温度解调的影响,提高了系统的测温准确度。实验结果表明,当光纤传感距离为5.8 km时,温度波动由9.01 ℃下降到0.57 ℃,测温准确度由5.50 ℃优化至0.87 ℃。

Abstract

To improve the measuring speed and the measuring accuracy of the distributed fiber Raman temperature measurement system, a temperature demodulation method of self-compensation for fiber loss and fiber dispersion is proposed, and the experimental verification is carried out. The loss between Stokes backscattering signal and anti-Stokes backscattering signal is modified by the proposed method, the calibration processing for the entire sensing fiber before temperature measurement is avoided, and the system operating time is reduced. The dispersion compensation shift algorithm is applied to correct the position of the Stokes backscattering signal. The intensity of Stokes backscattering signal can be obtained at the same position of the anti-Stokes backscattering signal, which eliminates the influence of fiber dispersion on temperature demodulation and improves the accuracy of temperature measurement. The experimental results indicate that the temperature fluctuation is declined from 9.01 ℃ to 0.57 ℃ when the fiber sensing distance is 5.8 km, and the temperature accuracy is optimized from 5.50 ℃ to 0.87 ℃.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN29;TP212

DOI:10.3788/cjl201744.0306002

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61377089)、山西省科技攻关项目(20140321003-1)、山西省青年科技研究基金面上青年基金(201601D021069)

收稿日期:2016-10-31

修改稿日期:2016-11-24

网络出版日期:--

作者单位    点击查看

张明江:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
李 健:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
刘 毅:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
张建忠:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
李云亭:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
黄 琦:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
刘瑞霞:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024
杨帅军:新型传感器与智能控制教育部重点实验室, 山西 太原 030024太原理工大学物理与光电工程学院光电工程研究所, 山西 太原 030024

联系人作者:张明江(zhangmingjiang@tyut.edu.cn)

备注:张明江(1976—),男,博士,副教授,硕士生导师,主要从事分布式光纤传感技术、超宽带雷达测距技术、半导体激光器非线性动力学特性及应用方面的研究。

【1】Tu G J, Zhang X P, Zhang Y X, et al. The development of an Φ-OTDR system for quantitative vibration measurement[J]. IEEE Photonics Technology Letters, 2015, 27(12): 1349-1352.

【2】Fu Xinghu, Xie Haiyang, Yang Chuanqing, et al. Research on the temperature sensing characteristics of triple cladding quartz specialty fiber based on cladding mode resonance[J]. Acta Physica Sinica, 2016, 65(2): 024211.
付兴虎, 谢海洋, 杨传庆, 等. 基于包层模谐振的三包层石英特种光纤温度传感特性[J]. 物理学报, 2016, 65(2): 024211.

【3】Bi Weihong, Yang Xipeng, Li Jingyang, et al. Forward and backward Raman amplification of Brillouin scattering signal in Brillouin optical time domain reflectometer system[J]. Chinese J Lasers, 2014, 41(12): 1205007.
毕卫红, 杨希鹏, 李敬阳, 等. 布里渊光时域反射系统中布里渊散射信号的前向和后向拉曼放大研究[J]. 中国激光, 2014, 41(12): 1205007.

【4】Yu Xiangdong, Zhang Zaixuan, Zhu Haizhong, et al. A temperature compensating circuit for distributed optical fiber Raman temperature sensor[J]. Chinese J Lasers, 2010, 37(6): 1440-1444.
余向东, 张在宣, 祝海忠, 等. 一种应用于分布式光纤拉曼温度传感器的温度补偿电路[J]. 中国激光, 2010, 37(6): 1440-1444.

【5】Qin Z G, Chen L, Bao X Y. Wavelet denoising method for improving detection performance of distributed vibration sensor[J]. IEEE Photonics Technology Letters, 2012, 24(7): 542-544.

【6】Fernandez A F, Rodeghiero P, Brichard B, et al. Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2689-2694.

【7】de Jong S A P, Slingerland J D, van de Giesen N C. Fiber optic distributed temperature sensing for the determination of air temperature[J]. Atmospheric Measurement Techniques, 2015, 8(1): 335-339.

【8】Yilmaz G, Karlik S E. A distributed optical fiber sensor for temperature detection in power cables[J]. Sensors and Actuators A: Physical, 2006, 125(2): 148-155.

【9】Leung C K Y, Wan K T, Inaudi D, et al. Review: Optical fiber sensors for civil engineering applications[J]. Materials and Structures, 2015, 48(4): 871-906.

【10】Sun B N, Chang J, Lian J, et al. Accuracy improvement of Raman distributed temperature sensors based on eliminating Rayleigh noise impact[J]. Optics Communications, 2013, 306: 117-120.

【11】Hwang D, Yoon D J, Kwon I B, et al. Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering[J]. Optics Express, 2010, 18(10): 9747-9754.

【12】Park J, Bolognini G, Lee D, et al. Raman-based distributed temperature sensor with simplex coding and link optimization[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1879-1881.

【13】Saxena M K, Raju S J, Arya R, et al. Empirical mode decomposition-based detection of bend-induced error and its correction in a Raman optical fiber distributed temperature sensor[J]. IEEE Sensors Journal, 2016, 16(5): 1243-1252.

【14】Saxena M K, Raju S, Arya R, et al. Optical fiber distributed temperature sensor using short term Fourier transform based simplified signal processing of Raman signals[J]. Measurement, 2014, 47: 345-355.

【15】Soto M A, Nannipieri T, Signorini A, et al. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding[J]. Optics Letters, 2011, 36(13): 2557-2559.

【16】Cangialosi C, Ouerdane Y, Girard S, et al. Development of a temperature distributed monitoring system based on Raman scattering in harsh environment[J]. IEEE Transactions on Nuclear Science, 2014, 61(6): 3315-3322.

【17】Zhao Jian. Study on spatial resolution of distributed optical fiber temperature sensor[D]. Hangzhou: China Jiliang University, 2015: 14-17.
赵 健. 分布式光纤温度传感器空间分辨率研究[D]. 杭州: 中国计量大学, 2015: 14-17.

【18】Pradhan H S, Sahu P K. Characterisation of Raman distributed temperature sensor using deconvolution algorithms[J]. IET Optoelectronics, 2015, 9(2): 101-107.

【19】Wang Wei, Zhou Bangquan, Zhang Zaixuan, et al. Temperature measurement accuracy of the distributed optical fiber Raman photons temperature sensor system [J]. Acta Optica Sinica, 1999, 19(1): 100-105.
王 玮, 周邦全, 张在宣, 等. 分布型光纤拉曼光子温度传感器系统的测温精度[J]. 光学学报, 1999, 19(1): 100-105.

【20】Zhang Zaixuan, Jin Renzhu, Guo Ning, et al. New type distributed optical fiber Raman photons temperature sensors system[J]. Physics Experimentation, 2003, 23(1): 3-8.
张在宣, 金仁洙, 郭 宁, 等. 新型分布式光纤拉曼光子温度传感器系统[J]. 物理实验, 2003, 23(1): 3-8.

【21】Soto M A, Signorini A, Nannipieri T, et al. High-performance Raman-based distributed fiber-optic sensing under a loop scheme using anti-stokes light only[J]. IEEE Photonics Technology Letters, 2011, 23(9): 534-536.

【22】Wang W, Chang J, Lü G, et al. Wavelength dispersion analysis on fiber-optic Raman distributed temperature sensor system[J]. Photonic Sensors, 2013, 3(3): 256-261.

【23】Yang Rui, Li Xiaoyan, Gao Xiang. Correct the measurement error of distributed Raman optical fiber temperature measurement system[J]. Acta Photonica Sinica, 2015, 44(10): 1006006.
杨 睿, 李小彦, 高 翔. 分布式喇曼光纤测温系统中修正测量误差的方法[J]. 光子学报, 2015, 44(10): 1006006.

【24】Culshaw B, Kersey A. Fiber-optic sensing: A historical perspective[J]. Journal of Lightwave Technology, 2008, 26(9): 1064-1078.

引用该论文

Zhang Mingjiang,Li Jian,Liu Yi,Zhang Jianzhong,Li Yunting,Huang Qi,Liu Ruixia,Yang Shuaijun. Temperature Demodulation Method for Distributed Fiber Raman Temperature Measurement[J]. Chinese Journal of Lasers, 2017, 44(3): 0306002

张明江,李 健,刘 毅,张建忠,李云亭,黄 琦,刘瑞霞,杨帅军. 面向分布式光纤拉曼测温的新型温度解调方法[J]. 中国激光, 2017, 44(3): 0306002

被引情况

【1】赵亚,王强,凌张伟. 基于选择性平均阈值的分布式光纤自来水管泄漏检测定位及实验分析. 激光与光电子学进展, 2019, 56(3): 30602--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF