首页 > 论文 > 激光与光电子学进展 > 54卷 > 3期(pp:30003--1)

基于金刚石NV色心的超分辨成像技术

Super-Resolution Microscopy Using NV Center in Diamond

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光学显微镜的出现为细胞等微观结构的研究打开了新的大门,然而衍射极限的限制使得更加精细的结构难以探测。近年来,一些充满创造性的方法突破了衍射极限,达到纳米级分辨率。氮-空位(NV)色心是金刚石中一种常见的发光缺陷,由于其具有明亮而稳定的发光性质和较长的电子自旋相干时间而被广泛应用于量子计算与量子测量中;同时,NV色心在超分辨成像技术中也发挥着巨大作用,通过与各种超分辨成像显微镜的结合,实现了对NV色心的纳米级分辨率成像,而且进一步实现高空间分辨率的量子传感。本文简单介绍了NV色心的结构与性质,以及各类成像技术的基本原理;对NV色心与超分辨成像结合的各项技术实验成果进行了归纳与比较,并对其应用进行了总结与展望。

Abstract

The emergence of optical microscopes opens new doors for the study of cell structures. However, the diffraction limit restricts the detection of fine structures. Recent years, a variety of methods are proposed to overcome the diffraction limit and reach the nanoscale resolution. The nitrogen-vacancy (NV) color center, an important defect in diamond with bright and stable luminescence and long electron spin coherence time, is widely used in quantum computation and quantum measurement. At the same time, it also plays a significant role in super-resolution microscopies. The NV center nanoscale resolution imaging is realized with the combination of all kinds of super resolution imaging microscope, and further the quantum sensor of high spatial resolution is realized. A brief introduction to the structure and the property of NV centers and basic principles of the imaging techniques are given simply. The experimental results of the super-resolution imaging with NV centers are summarized and compared, and finally its applications are summarized and prospected in the future.

投稿润色
补充资料

中图分类号:O439

DOI:10.3788/lop54.030003

所属栏目:综述

基金项目:国家自然科学基金(11374290,91536219,61522508,11504363)、中国博士后科学基金会(2016T90565)

收稿日期:2016-09-12

修改稿日期:2016-11-22

网络出版日期:--

作者单位    点击查看

杜 博:中国科学技术大学量子信息重点实验室, 安徽 合肥 230026
陈向东:中国科学技术大学量子信息重点实验室, 安徽 合肥 230026
孙方稳:中国科学技术大学量子信息重点实验室, 安徽 合肥 230026

联系人作者:杜博(dubo@mail.ustc.edu.cn)

备注:杜 博(1995-),女,硕士研究生,主要从事量子光学方面的研究。

【1】Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Appl Spectrosc, 2011, 65(9): 967-980.

【2】Heilemann M. Fluorescence microscopy beyond the diffraction limit[J]. Journal of Biotechnology, 2010, 149(4): 243-251.

【3】Schermelleh L, Carlton P M, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5581): 1332-1336.

【4】Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photon, 2009, 3(3): 144-147.

【5】Wildanger D, Patton B R, Schill H, et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ngstrm emitter localization[J]. Adv Mater, 2012, 24(44): OP309-OP313.

【6】Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophys J, 2006, 91(11): 4258-4272.

【7】Zhuang X. Nano-imaging with STORM[J]. Nature Photon, 2009, 3(7): 365-367.

【8】Dertinger T, Colyer R, Iyer G, et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of National Academy of Sciences of the United States of America, 2009, 106(52): 22287-22292.

【9】Geissbuehler S, Dellagiacoma C, Lasser T. Comparison between SOFI and STORM[J]. Biomed Opt Express, 2011, 2(3): 408-420.

【10】Doherty M W, Manson N B, Delaney P, et al. The nitrogen-vacancy colour centre in diamond[J]. Phys Rep, 2013, 528(1): 1-45.

【11】Jelezko F, Wrachtrup J. Single defect centres in diamond: a review[J]. Physica Status Solidi Applications & Materials, 2006, 203(13): 3207-3225.

【12】Neumann P, Kolesov R, Naydenov B, et al. Quantum register based on coupled electron spins in a room-temperature solid[J]. Nature Phys, 2010, 6(4): 249-253.

【13】Balasubramanian G, Chan I Y, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature Letters, 2008, 455(7213): 648-651.

【14】Arroyocamejo S, Adam M P, Besbes M, et al. Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals[J]. Acs Nano, 2013, 7(12): 10912-9.

【15】Osseforth C, Moffitt J R, Schermelleh L, et al. Simultaneous dual-color 3D STED microscopy[J]. Opt Express, 2014, 22(6): 7028-7039.

【16】Tzeng Y K, FaklarisD O, Chang B M, et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion[J]. Angew Chem Int Ed, 2011, 50(10): 2262-2265.

【17】Han K Y, Kim S K, Eggeling C, et al. Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution[J]. Nano Lett, 2010, 10(8): 3199-3203.

【18】Rittweger E, Wildanger D, Hell S W. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion[J]. Europhys Lett, 2009, 86(1): 014001.

【19】Chen X, Zou C, Sun F, et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond[J]. Light: Sci & Appl, 2015, 4(1): e230.

【20】Dolde F, Doherty M W, Michl J, et al. Nanoscale detection of a single fundamental charge in ambient conditions using the NV- center in diamond[J]. Phys Rev Lett. 2014, 112(9): 097603.

【21】Pfender M, Aslam N, Wrachtrup J, et al. Single-spin stochastic optical reconstruction microscopy[J]. Proceedings of National Academy of Sciences of the United States of America, 2014, 111(41): 14669-14674.

【22】Cui J M, Sun F W, Chen X D, et al. Quantum statistical imaging of particles without restriction of the diffraction limit[J]. Phys Rev Lett, 2013, 110(15): 153901.

【23】Monticone D G, Katamadze K, Traina P, et al. Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics[J]. Phys Rev Lett, 2014, 113(14): 143602.

【24】Hall L T, Beart G C, Thomas E A, et al. High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond[J]. Sci Rep, 2012, 2: 401.

引用该论文

Du Bo,Chen Xiangdong,Sun Fangwen. Super-Resolution Microscopy Using NV Center in Diamond[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030003

杜 博,陈向东,孙方稳. 基于金刚石NV色心的超分辨成像技术[J]. 激光与光电子学进展, 2017, 54(3): 030003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF