光学 精密工程, 2017, 25 (1): 1, 网络出版: 2017-03-10   

干涉条纹相位锁定系统

Interference fringe phase locking system
作者单位
清华大学 机械工程系 摩擦学国家重点实验室&精密超精密制造装备及控制北京市重点实验室, 北京 100084
摘要
干涉曝光系统中干涉条纹的相位漂移会导致曝光对比度降低, 为了有效抑制相位漂移, 利用声光调制器对干涉光频率进行实时调制。分析了条纹漂移的特点, 指出了主要干扰源是0~5 Hz的空气扰动。应用数值分析法得到了条纹漂移量与曝光对比度的关系曲线, 并以此为依据提出了条纹锁定精度的目标值。针对所要达到的锁定精度, 给出了系统硬件的选型方法, 搭建了基于RTX的干涉条纹相位锁定系统。利用闭环辨识的方法得到了系统的参数模型, 完成了反馈控制器的设计, 最终实现了实时锁定条纹相位的功能。实验结果表明, 在400 Hz的控制频率下, 干涉锁定系统能够有效抑制0~5 Hz的低频扰动, 干涉条纹相位漂移的3σ值可以控制在±0.04个条纹周期内, 满足干涉光刻的曝光对比度要求。
Abstract
The phase drift leads to low exposure contrast in interference lithography system. In order to effectively suppress the phase drift of interference fringe, an Acousto-Optic Modulator (AOM) was employed to modulate the frequency of interference beam in real time. The characteristic of phase drift was analyzed, indicating that the main disturbance came from air turbulence with frequency within 0~5 Hz. The relationship between phase drift and exposure contrast was deduced by numerical analysis, and the target phase accuracy of fringe locking system was submitted. In terms of the target accuracy, the experiment devices were picked and the experiment system based on RTX was prepared. Finally the parameter model of system was established by closed-loop identification and a feedback controller was designed, thus realizing the fringe locking function. The experiment results indicated that the low-frequency disturbance ranging from 0 to 5 Hz is suppressed efficiently by the proposed fringe locking system under the control frequency of 400 Hz. The 3σ value of phase drift is within ±0.04 period, which satisfies the exposure contrast requirements of interference lithography.

鲁森, 杨开明, 朱煜, 王磊杰, 张鸣. 干涉条纹相位锁定系统[J]. 光学 精密工程, 2017, 25(1): 1. LU Sen, YANG Kai-ming, ZHU Yu, WANG Lei-jie, ZHANG Ming. Interference fringe phase locking system[J]. Optics and Precision Engineering, 2017, 25(1): 1.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!