中国激光, 2017, 44 (5): 0508002, 网络出版: 2017-05-03   

反脉冲时间依赖可塑性学习机制的光学实现

Optical Implementation of Anti-Spike-Timing-Dependent Plasticity Learning Mechanism
作者单位
1 北京交通大学理学院光信息科学与技术研究所发光与光信息技术教育部重点实验室, 北京 100044
2 北京交通大学电气工程学院, 北京 100044
摘要
突触可塑性为神经网络的学习机制提供了基础。基于单个半导体光放大器(SOA)的非线性偏振旋转(NPR)和交叉增益调制(XGM)效应实现了反脉冲时间依赖可塑性(anti-STDP)学习机制。通过调整SOA驱动电流,可以实现长时程增强窗口(LTP)和长时程抑制窗口(LTD)的高度和宽度调整,能更好地模拟神经网络。实验测量得到的anti-STDP曲线与生物系统中测量得到的学习曲线相吻合。使用该anti-STDP光路得到的学习曲线的时间窗口约为几百皮秒,其速度是人类大脑STDP学习机制的108倍。由于该anti-STDP光路系统简单,且SOA易于与其他器件集成,该anti-STDP光路可以用于实现大规模超快神经拟态计算系统。
Abstract
Synaptic plasticity provides the basis for learning mechanism in neural network. Anti-spike-timing-dependent plasticity (anti-STDP) learning mechanism is implemented by the nonlinear polarization rotation (NPR) and cross-gain modulation (XGM) based on single semiconductor optical amplifier (SOA). By adjusting the drive current of SOA, the weight and height of long-term potentiation (LTP) and long-term depression (LTD) windows can be adjusted to better mimic the neural network. The anti-STDP learning curves measured by the experiment closely resemble the learning curves measured by the biological system. Using the proposed anti-STDP optical circuit, the time window of anti-STDP learning curves is about several hundred picoseconds, which is 108 times faster than the speed of STDP learning mechanism in human brain. Since the proposed anti-STDP optical circuit is simple, and SOA can be integrated with some other devices easily, it can be used to realize large-scale and ultrafast neuromorphic computing systems.

李强, 王智, 崔粲, 乐燕思, 宋晓佳, 孙翀翚, 刘彪, 吴重庆. 反脉冲时间依赖可塑性学习机制的光学实现[J]. 中国激光, 2017, 44(5): 0508002. Li Qiang, Wang Zhi, Cui Can, Le Yansi, Song Xiaojia, Sun Chonghui, Liu Biao, Wu Chongqing. Optical Implementation of Anti-Spike-Timing-Dependent Plasticity Learning Mechanism[J]. Chinese Journal of Lasers, 2017, 44(5): 0508002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!