应用激光, 2017, 37 (1): 7, 网络出版: 2017-06-27  

激光沉积制造工艺对γ-TiAl合金组织及性能的影响

Effects of Laser Deposition Manufacturing Process on Microstructure and Properties of γ-TiAl Alloy
作者单位
1 沈阳航空航天大学 航空制造工艺数字化国防重点学科实验室, 辽宁 沈阳 110136
2 沈阳航空航天大学材料科学与工程学院, 辽宁 沈阳 110136
摘要
采用激光沉积制造(LDM)技术制备了γ-TiAl合金(Ti-48Al-2Cr-2Nb)试样, 并对不同工艺条件(激光功率和扫描速度)下试样的相组成、显微组织及显微硬度进行了分析。结果表明, 经LDM工艺制备的γ-TiAl合金显微组织特征为等轴状的初生晶粒内包含有细小层片状的γ、α2相和B2相; 扫描速度恒定, 随着激光功率的增加, 初生等轴晶晶粒尺寸逐渐增大, 晶内的α2相和B2相含量逐渐增加, γ相含量降低, 合金显微硬度逐渐增大; 激光功率恒定, 随着扫描速度的增加, 初生等轴晶晶粒尺寸逐渐减小, 晶内的α2相和B2相含量逐渐减少, γ相含量增加, 合金显微硬度逐渐增大。经综合分析认为激光功率1 200 W、扫描速度7 mm/s为最佳的γ-TiAl合金LDM工艺参数。
Abstract
The γ-TiAl samples (Ti-48Al-2Cr-2Nb) which was fabricated by laser deposition manufacturing (LDM) technique under different processing conditions (laser power and scanning speed) was studied by means of XRD, OM and hardness tester. It turns out that the as-deposited γ-TiAl appeared unique microstructure, i.e., fine lamella of γ,α2 and B2 was embodied in the equiaxed primary grains; when the scanning speed keeps constant, with the laser power increasing, the diameter of primary equiaxed grain increases gradually, the percentage of fine lamellaα2and B2 phase increases gradually, on the contrary, theγphase content decreases, and the micro-hardness of the samples increases gradually; when the laser power keeps constant, with the increase of scanning speed, the diameter of primary equiaxed grain reduces gradually, the percentage of fine lamella α2and B2 phase reduces gradually, while, the γ phase content increases, and the micro-hardness of the samples increases gradually. According to comprehensive analysis, the optimized processing parameter with laser power at 1 200 W and scanning speed at 7 mm/s is proposed.

尚纯, 刘春忠, 李长富, 钦兰云, 于跃龙, 李辉. 激光沉积制造工艺对γ-TiAl合金组织及性能的影响[J]. 应用激光, 2017, 37(1): 7. Shang Chun, Liu Chunzhong, Li Changfu, Qin Lanyun, Yu Yuelong, Li Hui. Effects of Laser Deposition Manufacturing Process on Microstructure and Properties of γ-TiAl Alloy[J]. APPLIED LASER, 2017, 37(1): 7.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!