首页 > 论文 > 强激光与粒子束 > 29卷 > 5期(pp:55004--1)

磁压缩系统中热脱附杂质粒子研究

Study of impurities generation via thermal desorption in magnetic compression system

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

磁压缩系统为俄罗斯实验物理研究院提出的核聚变方案。磁压缩系统腔室中杂质粒子可能来源于热脱附、等离子体刮削器壁等途径。利用ANSYS工具模拟5 MA脉冲电流流过腔室,并给出电极温度的二维分布图,结合研究小尺寸铜样品上杂质的解吸附来分析磁压缩系统腔室中热脱附过程产生的杂质粒子。通过测量3 keV的Ar+离子入射到Cu(110),Cu(111)样品表面的飞行时间谱,分析样品表面吸附的杂质种类,以及样品表面杂质含量随温度的变化关系。研究表明杂质粒子含量跟电极温度有关联性,且跟电极材料表面结构相关。

Abstract

The magnetic compression system (MAGO) proposed by VNIIEF is a new concept of nuclear fusion. The impurities in magnetic compression system may come from thermal desorption process, and wall materials washout by plasma. In this paper, combined with the 2-D temperature distribution of anodic electrode for 5 MA pulsed current flowing through gas pondermotor unit, the impurities generated from thermal desorption process in MAGO chamber were analyzed, consulted to the impurities desorption of copper sample. The TOF spectrum of 3 keV Ar+ scattering from Cu(110), Cu(111) surfaces were measured, and the impurity elements on copper surface were analyzed. According to the results, impurities desorption depends on the temperature and the surface structure of anodic electrode.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O562

DOI:10.11884/hplpb201729.160544

所属栏目:脉冲功率技术

基金项目:国家自然科学基金项目(11405166)

收稿日期:2016-12-05

修改稿日期:2017-01-19

网络出版日期:--

作者单位    点击查看

罗先文:中国工程物理研究院 银河596科技园脉冲功率科学与技术重点实验室, 成都 610200
魏 懿:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999

联系人作者:罗先文(18681630692@163.com)

备注:罗先文(1985-), 男,博士,从事等离子体放电及加热研究。

【1】Buyko A, Garanin S. Magnetohydrodynamic computation of magnetized plasma heating by shock wave in supersonic outflow from nozzle[C]//Vant Ser Metodiki I Programmy Chislennogo Resheniya Zadach Matematicheskoy Fiziki. 1983: 30-32.

【2】Garanin S. The MAGO system[J]. IEEE Trans Plasma Sci, 1998, 26(4): 1230-1238.

【3】Lindemuth I. Computational modeling of “MAGO” and other magnetized target fusion concepts[R]. LA-UR-93-0045, 1993.

【4】Yaccetti J, Intrator T, Wurden G. FRX-L: A field-reversed configuration plasma injector for magnetized target fusion[J]. Rev Sci Instr, 2003, 74(10): 4314-4320.

【5】Vakhrameev Y, Mokhov V. Ignition criterion and ignition margins for thermonuclear targets[J]. Atomnaya Energiya, 1980, 92(4): 121-125.

【6】Khariton Y, Mokhov V, Chernyshev V. On operation of magnetic implosion thermonuclear targets[J]. Sov Phys Usp, 1976, 19(3): 1032.

【7】Mokhov V, Chernyshev V. On feasibility to solve the controlled thermonuclear fusion problem basing on magnetogasdynamical energy cumulation[J]. Sov Phys Dokl, 1979, 24(4): 557.

【8】Shlachter J. MAGO: An innovative approach to magnetized target fusion[R]. LALP-95-156, 1995.

【9】Chernyshev V. Super-high power explosive magnetic energy source for thermonuclear and physical application[C]//Proceedings of the MG-III. 1996: 30-32.

【10】Lindemuth I, Reinovsky R, Chrien R, et al. Target plasma formation for magnetic compression/magnetized target fusion[J]. Phys Rev Lett, 1995, 75(10): 1593-1956.

【11】Garanin S, Mamyshev V. The MAGO system: Current status[J]. IEEE Trans Plasma Sci, 2006, 34(5): 2273-2278.

【12】Eddleman J, Hartman C. Computational MHD modeling of the MAGO experiment[R]. UCRL-JC-114685, 1995.

【13】Burenkov O, Garanin S. Results of numerical simulations for some joint VNIIEF/LANL experiments with MAGO chamber[C]//Proceedings 9th Int Conf on Megagauss Magnetic Field Generation and Related Topics. 2002: 545-550.

【14】Garanin S. Assessment of effects resulting in plasma pollution with material in MAGO chamber[C]//Proceedings 9th Int Conf on Megagauss Magnetic Field Generation and Related Topics. 2004: 684-688.

引用该论文

Luo Xianwen,Wei Yi. Study of impurities generation via thermal desorption in magnetic compression system[J]. High Power Laser and Particle Beams, 2017, 29(5): 055004

罗先文,魏 懿. 磁压缩系统中热脱附杂质粒子研究[J]. 强激光与粒子束, 2017, 29(5): 055004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF