Matter and Radiation at Extremes, 2016, 1 (4): 213, Published Online: May. 9, 2017   

Investigation of spherical and concentric mechanism of compound droplets

Author Affiliations
1 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
2 School of Energy and Power Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
3 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing,Jiangsu, 210096, China
Abstract
Polymer shells with high sphericity and uniform wall thickness are always needed in the inertial confined fusion (ICF) experiments. Driven by the need to control the shape of water-in-oil (W1/O) compound droplets, the effects of the density matching level, the interfacial tension and the rotation speed of the continuing fluid field on the sphericity and wall thickness uniformity of the resulting polymer shells were investigated and the spherical and concentric mechanisms were also discussed. The centering of W1/O compound droplets, the location and movement of W1/O compound droplets in the external phase (W2) were significantly affected by the density matching level of the key stage and the rotation speed of the continuing fluid field. Therefore, by optimizing the density matching level and rotation speed, the batch yield of polystyrene (PS) shells with high sphericity and uniform wall thickness increased. Moreover, the sphericity also increased by raising the oil/water (O/W2) interfacial tension, which drove a droplet to be spherical. The experimental results show that the spherical driving force is from the interfacial tension affected by the two relative phases, while the concentric driving force, as a resultant force, is not only affected by the three phases, but also by the continuing fluid field. The understanding of spherical and concentric mechanism can provide some guidance for preparing polymer shells with high sphericity and uniform wall thickness.Physics for financial support (2014B0302052) and National Natural Science Foundation of China (U1530260).

Meifang Liu, Lin Su, Jie Li, Sufen Chen, Yiyang Liu, Jing Li, Bo Li, Yongping Chen, Zhanwen Zhang. Investigation of spherical and concentric mechanism of compound droplets[J]. Matter and Radiation at Extremes, 2016, 1(4): 213.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!