Photonics Research, 2017, 5 (3): 03000143, Published Online: Oct. 9, 2018  

Sensing of microparticles based on a broadband ultrasmall microcavity in a freely suspended microfiber Download: 644次

Author Affiliations
1 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
2 School of Physics, South China University of Technology, Guangzhou 510640, China
Abstract
We theoretically design and experimentally realize a broadband ultrasmall microcavity for sensing a varying number of microparticles whose diameter is 2 μm in a freely suspended microfiber. The performance of the microcavity is predicted by the theory of one-dimensional photonic crystals and verified by the numerical simulation of finite-difference time domain and the experimental characterization of reflection and transmission spectra. A penetrating length into the reflectors as small as about four periods is demonstrated in the numerical simulation, giving rise to an ultrasmall effective mode volume that can increase the sensitivity and spatial resolution of sensing. Moreover, a reflection band as large as 150 nm from the reflectors of the microcavity has been realized in silica optical microfiber in the experiment, which highly expands the wavelength range of sensing. Our proposed microcavity integrated into a freely suspended optical fiber offers a convenient and stable method for long-distance sensing of microparticles without the need for complicated coupling systems and is free from the influence of substrates.

Yang Yu, Ting-Hui Xiao, Hong-Lian Guo, Zhi-Yuan Li. Sensing of microparticles based on a broadband ultrasmall microcavity in a freely suspended microfiber[J]. Photonics Research, 2017, 5(3): 03000143.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!