首页 > 论文 > Photonics Research > 5卷 > 3期(pp:207--1)

Numerical simulation and temporal characterization of dual-pumped microring-resonator-based optical frequency combs

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Dual-pumped microring-resonator-based optical frequency combs (OFCs) and their temporal characteristics are numerically investigated and experimentally explored. The calculation results obtained by solving the driven and damped nonlinear Schr?dinger equation indicate that an ultralow coupled pump power is required to excite the primary comb modes through a non-degenerate four-wave-mixing (FWM) process and, when the pump power is boosted, both the comb mode intensities and spectral bandwidths increase. At low pump powers, the field intensity profile exhibits a cosine variation manner with frequency equal to the separation of the two pumps, while a roll Turing pattern is formed resulting from the increased comb mode intensities and spectral bandwidths at high pump powers. Meanwhile, we found that the power difference between the two pump fields can be transferred to the newly generated comb modes, which are located on both sides of the pump modes, through a cascaded FWM process. Experimentally, the dual-pumped OFCs were realized by coupling two self-oscillating pump fields into a microring resonator. The numerically calculated comb spectrum is verified by generating an OFC with 2.0 THz mode spacing over 160 nm bandwidth. In addition, the formation of a roll Turing pattern at high pump powers is inferred from the measured autocorrelation trace of a 10 free spectral range (FSR) OFC. The experimental observations accord well with the numerical predictions. Due to their large and tunable mode spacing, robustness, and flexibility, the proposed dual-pumped OFCs could find potential applications in a wide range of fields, including arbitrary optical waveform generation, high-capacity optical communications, and signal-processing systems.<录用日期>2017-03-21<上网时间>2017-03-22

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.5.000207

基金项目:Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)10.13039/501100002367 (XDB 24030600); National Key Research and Development Program of China (2016YFF0200702); National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61690222, 61308037, 61635013); CAS-SAFEA International Partnership Program for Creative Research Teams10.13039/501100005231.

收稿日期:2017-02-10

录用日期:--

网络出版日期:--

作者单位    点击查看

Xiaohong Hu:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Weiqiang Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaChina-UK Joint Research Center on Micro/Nano Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, China
Leiran Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Wenfu Zhang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, ChinaChina-UK Joint Research Center on Micro/Nano Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, Chinae-mail: wfuzhang@opt.ac.cn
Yishan Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, Chinae-mail: Yshwang@opt.ac.cn
Wei Zhao:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi’an 710119, China

【1】S. T. Cundiff, and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).

【2】T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. H nsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).

【3】P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).

【4】A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21, 13333–13341 (2013).

【5】H. J. Jung, C. Xiong, K. Y. Fong, X. F. Zhang, and H. X. Tang, “Optical frequency comb generation from aluminum nitride microring resonator,” Opt. Lett. 38, 2810–2813 (2013).

【6】M. A. Foster, S. L. Jacob, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).

【7】T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the modulational instability in microresonator frequency combs,” Phys. Rev. A 88, 023819 (2013).

【8】I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express 17, 16209–16215 (2009).

【9】A. Antikainen, and G. Agrawal, “Dual-pump frequency comb generation in normally dispersive optical fibers,” J. Opt. Soc. Am. B. 32, 1705–1711 (2015).

【10】Y. K. Chembo, and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A 82, 033801 (2010).

【11】T. Hansson, D. Modotto, and S. Wabnitz, “On the numerical simulation of Kerr frequency combs using coupled mode equations,” Opt. Commun. 312, 134–136 (2014).

【12】X. H. Hu, Y. S. Liu, X. Xu, Y. Feng, W. F. Zhang, W. Q. Wang, J. Z. Song, Y. S. Wang, and W. Zhao, “Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator,” Appl. Opt. 54, 8751–8757 (2015).

【13】Y. K. Chembo, and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A 87, 053852 (2013).

【14】A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion,” Phys. Rev. A 71, 033804 (2005).

【15】T. Hansson, and S. Wabnitz, “Bichromatically pumped microresonator frequency combs,” Phys. Rev. A 90, 013811 (2014).

【16】D. V. Strekalov, and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A 79, 041805 (2009).

【17】E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion,” Opt. Express 20, 3331–3344 (2012).

【18】V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightwave Technol. 32, 840–846 (2014).

【19】W. Q. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. S. Wang, L. R. Wang, W. F. Zhang, L. Wang, X. H. Hu, G. X. Wang, H. Hu, Y. L. Su, F. T. Li, Y. S. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6, 28501 (2016).

【20】Y. Okawachi, M. J. Yu, K. Luke, D. O. Carvalho, S. Ramelow, A. Farsi, M. Lipson, and A. L. Gaeta, “Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator,” Opt. Lett. 40, 5267–5270 (2015).

【21】M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).

【22】M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2, 737–740 (2008).

【23】D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17, 1865–1870 (2009).

【24】A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78, 043806 (2008).

【25】X. Xue, Y. Xuan, P.-H. Wang, Y. Liu, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photon. Rev. 9, L23–L28 (2015).

引用该论文

Xiaohong Hu, Weiqiang Wang, Leiran Wang, Wenfu Zhang, Yishan Wang, and Wei Zhao, "Numerical simulation and temporal characterization of dual-pumped microring-resonator-based optical frequency combs," Photonics Research 5(3), 207 (2017)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF