首页 > 论文 > Photonics Research > 5卷 > 3期(pp:219--1)

Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

A wavelength-swept fiber laser is proposed and successfully demonstrated based on a bidirectional used linear chirped fiber Bragg grating (LC-FBG). The wavelength-swept operation principle is based on intracavity pulse stretching and compression. The LC-FBG can introduce equivalent positive and negative dispersion simultaneously, which enables a perfect dispersion matching to obtain wide-bandwidth mode-locking. Experimental results demonstrate a wavelength-swept fiber laser that exhibits a sweep rate of about 5.4 MHz over a 2.1 nm range at a center wavelength of 1550 nm. It has the advantages of simple configuration and perfect dispersion matching in the laser cavity.<录用日期>2017-03-14<上网时间>2017-03-15

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.5.000219

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61475065); Natural Science Foundation of Guangdong Province10.13039/501100003453 (2015A030313322).

收稿日期:2017-02-06

录用日期:--

网络出版日期:--

作者单位    点击查看

Lin Wang:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Minggui Wan:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Zhenkun Shen:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Xudong Wang:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Yuan Cao:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Xinhuan Feng:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
Bai-ou Guan:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China

联系人作者:eexhfeng@gmail.com;

【1】T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).

【2】C. Y. Ryu, and C. S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).

【3】D. P. Zhou, Z. G. Qin, W. H. Li, L. Chen, and X. Y. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20, 13138–13145 (2012).

【4】S. S. Jyu, S. F. Liu, W. W. Hsiang, and Y. Lai, “Fiber dispersion measurement with a swept-wavelength pulse light source,” IEEE Photon. Technol. Lett. 22, 598–600 (2010).

【5】S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).

【6】R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).

【7】R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).

【8】R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).

【9】M. Y. Jeon, J. Zhang, Q. Wang, and Z. P. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength-swept laser with multiple SOAs,” Opt. Express 16, 2547–2554 (2008).

【10】W. Wieser, T. Klein, D. C. Adler, F. Trepanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).

【11】S. Yamashita, and M. Asano, “Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning,” Opt. Express 14, 9299–9306 (2006).

【12】Y. Takubo, and S. Yamashita, “In vivo OCT imaging using wavelength-swept fiber laser based on dispersion tuning,” IEEE Photon. Technol. Lett. 24, 979–981 (2012).

【13】Y. Takubo, and S. Yamashita, “High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG,” Opt. Express 21, 5130–5139 (2013).

【14】M. G. Wan, L. Wang, F. Li, Y. Cao, X. D. Wang, X. H. Feng, B. O. Guan, and P. K. A. Wai, “Rapid, k-space linear wavelength scanning laser source based on recirculating frequency shifter,” Opt. Express 24, 27614–27621 (2016).

【15】G. Gavioli, E. Torrengo, G. Bosco, A. Carena, S. Savory, F. Forghieri, and P. Poggiolini, “Ultra-narrow-spacing 10-channel 1.12 Tb/s D-WDM long-haul transmission over uncompensated SMF and NZDSF,” IEEE Photon. Technol. Lett. 22, 1419–1421 (2010).

【16】S. Moon, and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express 14, 11575–11584 (2006).

【17】J. Xu, C. Zhang, J. Xu, K. K. Wong, and K. K. Tsia, “Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch,” Opt. Lett. 39, 622–625 (2014).

【18】T. J. Ahn, Y. Park, and J. Azana, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum 18, 148–165 (2012).

【19】S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22, 3414–3424 (2014).

【20】K. Chan, and C. Shu, “Compensated dispersion tuning in harmonically mode-locked fiber laser,” Appl. Phys. Lett. 75, 891–893 (1999).

【21】J. F. Brennan, E. Hernadez, J. A. Valenti, P. G. Sinha, M. R. Matthews, D. E. Elder, G. A. Beauchesne, and C. H. Byrd, “Wide-bandwidth chirped fiber Bragg gratings with low delay ripple amplitude,” U.S. patent US6741773B2 (May25, 2004).

【22】K. Ennser, M. N. Zervas, and R. I. Laming, “Optimization of apodized linearly chirped fiber gratings for optical communications,” IEEE J. Quantum Electron. 34, 770–778 (1998).

【23】Z. Wang, Q. Lin, Y. T. Jian, L. L. Liu, and C. Q. Wu, “Dispersion measurement of the semiconductor optical amplifiers,” Proc. SPIE 9233, 92331J (2014).

引用该论文

Lin Wang, Minggui Wan, Zhenkun Shen, Xudong Wang, Yuan Cao, Xinhuan Feng, and Bai-ou Guan, "Wavelength-swept fiber laser based on bidirectional used linear chirped fiber Bragg grating," Photonics Research 5(3), 219 (2017)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF