Collection Of theses on high power laser and plasma physics, 2015, 13 (1): 962403, Published Online: May. 27, 2017  

Focusing and imaging properties of diffractive optical elements with star-ring topological structure

Author Affiliations
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
A kind of diffractive optical elements (DOE) with star-ring topological structure is proposed and their focusing and imaging properties are studied in detail. The so-called star-ring topological structure denotes that a large number of pinholes distributed in many specific zone orbits. In two dimensional plane, this structure can be constructed by two constrains, one is a mapping function, which yields total potential zone orbits, corresponding to the optical path difference (OPD); the other is a switching sequence based on the given encoded seed elements and recursion relation to operate the valid zone orbits. The focusing and imaging properties of DOE with star-ring topological structure are only determined by the aperiodic sequence, and not relevant to the concrete geometry structure. In this way, we can not only complete the traditional symmetrical DOE, such as circular Dammam grating, Fresnel zone plates, photon sieves, and their derivatives, but also construct asymmetrical elements with anisotropic diffraction pattern. Similarly, free-form surface or three dimensional DOE with star-ring topological structure can be constructed by the same method proposed. In consequence of smaller size, lighter weight, more flexible design, these elements may allow for some new applications in micro and nanphotonics.

Jie Ke, Junyong Zhang, Yanli Zhang, Meizhi Sun. Focusing and imaging properties of diffractive optical elements with star-ring topological structure[J]. Collection Of theses on high power laser and plasma physics, 2015, 13(1): 962403.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!