基于单光频梳的卫星通信多频段变频方法
Multi-Band Frequency Conversion Scheme Based on Single Optical Frequency Comb for Satellite Communication
摘要
提出一种基于单光频梳的简单, 灵活和稳定的变频方法。该方法使用了双偏振正交移相器, 该调制器是一种集成调制器, 集成了两个双平行马赫-曾德尔调制器(DPMZM), 其中一个DPMZM作为光频梳产生器, 另一个进行载波抑制单边带调制产生单边带信号。从该调制器输出的信号是一个正交的耦合信号, 在偏振控制器和偏振片的控制下, 被转化为一个具有固定偏振角的信号, 最后送入光电探测器实现微波信号的产生。仿真结果表明, 通过适当调整该集成调制器中6个直流偏置点和外接的移相器, 可以实现多频段变频。比如C波段3.8 GHz的信号可以被变频到X, Ku, K和Ka波段; X波段9.6 GHz的信号可以被下变频到C波段同时也可以被上变频到Ku, K, Ka波段。除此之外, 整个系统体现出对直流偏置点漂移的良好适应性, 具有很好的可操作性。
Abstract
A simple, flexible and stable frequency conversion approach based on a single optical frequency comb (OFC) is proposed. In this method, a dual-polarization quadrature phase shift keying modulator (DP-QPSK) is employed. The DP-QPSK is an integrate modulator which integrates two dual-parallel Mach-Zehnder modulators (DPMZM). One DPMZM is working as an OFC generator. Another is working as carrier suppressive single sideband modulator to generate single sideband signal. An orthogonal and coupled signal is output from this modulator. This signal is converted to a signal with fixed polarization angle under the control of polarization controller and the polarizer. After the signal is put into the photoelectric detector, the microwave signal is generated. The simulation results show that multi-band frequency conversion can be realized by properly adjusting six direct current (DC) bias points of the proposed integrate modulator and disjunctive phase shifter. For example, the signal at C band 3.8 GHz can be converted to X, Ku, K and Ka bands. The signal at X band 9.6 GHz can be down-converted to C band or up-converted to Ku, K, Ka bands. In addition, the system emerges a good adaption to the DC bias points drafting and has a good operability.
中图分类号:TN929
所属栏目:光学器件
基金项目:国家自然科学基金重点项目(61571461, 61401502)、陕西省自然科学基金(2016JQ6008)
收稿日期:2016-11-14
修改稿日期:2017-01-17
网络出版日期:--
作者单位 点击查看
赵尚弘:
朱子行:
李 轩:
郑秋容:
屈 坤:
胡大鹏:
联系人作者:林涛(ltzhineng@126.com)
备注:林 涛(1994—), 男, 硕士研究生, 主要从事微波光子方面的研究。
【1】Tavik G C, Hilterbrick C L, Evins J B, et al. The advanced multifunction RF concept[J]. IEEE Trans Microw Theory Tech, 2005, 53(3): 1009-1020.
【2】Panagopoulos A D, Arapoglou P D M, Cottis P G. Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques[J]. IEEE Commun Surveys Tuts, 2004, 6(3): 2-14.
【3】Mallette L A. Atomic and quartz clock hardware for communication and navigation satellites[C]. Proceedings of the 39th Annual Precise Time and Time Interval Meeting, 2007: 45-58.
【4】Yao J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335.
【5】Capmany J, Novak D. Microwave photonics combines two worlds[J]. Nat Photonics, 2007, 1(6): 319-330.
【6】Chang W S C. RF photonic technology in optical fiber links[M]. New York: Cambridge University Press, 2002: Chap. 10.
【7】Gopalakrishnan G K, Burns W K, Bulmer C H. Microwave-optical mixing in LiNbO3 modulators[J]. IEEE Trans Microw Theory Tech, 1993, 41(12): 2383-2391.
【8】Juodawlkis P, Hargreaves J, Younger R, et al. Optical down-sampling of wide-band microwave signals[J]. Journal of Lightwave Technology, 2003, 21(12): 3116-3124.
【9】Yang B, Jin X F, Chen Y, et al. Photonic microwave up-conversion of vector signals based on an optoelectronic oscillator[J]. IEEE Photonics Tech Lett, 2013, 25(18): 1758-1760.
【12】Pagán V R, Haas B M, Murphy T E. Linearized electro optic microwave down-conversion using phase modulation and optical filtering[J]. Opt Express, 2011, 19(2): 883-895.
【13】Lam A K M, Fairburn M, Jaeger N A F. Wide-band electro optic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique[J]. IEEE Trans Microw Theory Tech, 2006, 54(1): 240-246.
【14】Zhao Y G, Pang X D, Deng L, et al. Ultra-broadband photonic harmonic mixer based on optical comb generation[J]. IEEE Photonics Tech Lett, 2012, 24(1): 16-18.
【15】Wiberg A O, Liu L, Tong Z, et al. Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source[J]. Opt Express, 2012, 20(26): B419-B427.
【16】Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb[J]. IEEE Trans Microw Theory Tech, 2010, 58(11): 3269-3278.
【17】Huang C B, Park S G, Leaird D E, et al. Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding[J]. Opt Express, 2008, 16(4): 2520-2527.
【18】Yang X W, Xu K, Yin J, et al. Optical frequency comb based multi-band microwave frequency conversion for satellite applications[J]. Opt Express, 2014, 22(1): 869-877.
【19】Wang Q, Huo L, Xing Y F, et al. Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator[J]. Opt Lett, 2014, 39(10): 3050-3053.
引用该论文
Lin Tao,Zhao Shanghong,Zhu Zihang,Li Xuan,Zheng Qiurong,Qu Kun,Hu Dapeng. Multi-Band Frequency Conversion Scheme Based on Single Optical Frequency Comb for Satellite Communication[J]. Acta Optica Sinica, 2017, 37(6): 0623002
林 涛, 赵尚弘, 朱子行, 李 轩, 郑秋容, 屈 坤, 胡大鹏. 基于单光频梳的卫星通信多频段变频方法[J]. 光学学报, 2017, 37(6): 0623002
被引情况
【1】王文轩,陶 继,黄 龙. 基于光注入法布里-珀罗激光器的窄带可调谐微波光子滤波器. 中国激光, 2017, 44(10): 1006002--1
【2】赵彪,杜鹏飞,沃江海,丛雯珊,张钧凯,余岚. 基于啁啾光纤布拉格光栅的可调谐双通带微波光子滤波器. 激光与光电子学进展, 2019, 56(3): 30605--1
【3】徐恩明,李凡,张祖兴,李培丽. 单双通带可切换的微波光子滤波器. 光学学报, 2019, 39(5): 506003--1
【4】孙亚园,白光富,胡林. 双平行马赫-曾德尔调制器产生三角形光子微波及相似度影响因素. 激光与光电子学进展, 2019, 56(11): 110602--1
【5】李赫,赵尚弘,于丽娜,林涛,张昆,王国栋,蒋炜,李轩. 基于PDM-DMZM的多通道变频移相信号产生. 中国激光, 2020, 47(12): 1205004--1