48 fs, 108 MHz色散管理孤子掺Er3+光纤激光器
48 fs, 108 MHz dispersion-managed soliton Er3+-doped fiber laser
摘要
提出了一种基于商售光纤构建的适用于精密光谱光频梳应用的100 MHz重 复频率色散管理孤子光纤激光器的设计方案。通过采用低负色散光纤调控重复频率、高正色散光 纤增大腔内脉冲呼吸比,构建了重复频率为108 MHz、中心波长为1550 nm的 基于正色散掺铒光纤的色散管理孤子光纤激光器,该激光器腔内净色散为-0.0023 ps2,直接输出脉冲宽度为70 fs,经 光纤压缩后脉冲宽度为48 fs, 且脉冲中心波长处在1550 nm。
Abstract
A design scheme of dispersion managed soliton fiber lasers with 100 MHz repetition frequency suitable for constructing the optical frequency comb applied in precision spectroscopy is presented based on common commercial optical fibers. By adjusting the repetition frequency with low negative dispersion fibers and increasing the respiration ratio of the intra-cavity pulse with high positive dispersion fibers, a dispersion managed soliton fiber laser with repetition frequency of 108 MHz and center wavelength of 1550 nm based on positive dispersion erbium-doped fiber is built. The intra-cavity net dispersion of the laser is -0.0023 ps2. The direct output pulse width is 70 fs. The pulse width is 48 fs after fiber compression, and the pulse center wavelength is 1550 nm.
中图分类号:TN248
DOI:10.3969/j.issn.1007-5461. 2017.03.009
所属栏目:激光技术与器件
基金项目:Supported by National Natural Science Foundation of China(国家自然科学基金, 61377044, 61275186), National Basic Research Program of China(国家973计划, 2013CB934304)
收稿日期:2016-04-27
修改稿日期:2016-07-22
网络出版日期:--
作者单位 点击查看
马挺:中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室, 安徽 合肥 230031
吴浩煜:中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室, 安徽 合肥 230031
马金栋:中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室, 安徽 合肥 230031
路桥:中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室, 安徽 合肥 230031
李磐:北京航天控制仪器研究所, 北京 100854
毛庆和:中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室, 安徽 合肥 230031
联系人作者:时雷(leishi0603@126.com)
备注:时雷(1988-), 博士生,主要从事超短脉冲,光纤激光技术方面的研究。
【1】Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Phys. Rev. Lett., 2000, 84(22): 5102-5105.
【2】Udem T, Holzwarth R, Hansch T W. Optical frequency metrology[J]. Nature, 2002, 41(6877): 233-237.
【3】Gohle C, Stein B, Schliesser A, et al. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra[J]. Phys. Rev. Lett., 2007, 99(26): 263902.
【4】Baltuska A, Udem T, Uiberacker M, et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 2003, 421(6923): 611-615.
【5】Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.
【6】Supradeepa V R, Long C M, Wu R, et al. Comb-based radiofrequency photonic filters with rapid tunability and high selectivity[J]. Nature Photonics, 2011, (3): 186-194.
【7】Tamura K, Haus H A, Ippen E P. Self-starting additive pulse mode-locked erbium fibre ring laser[J]. Electr. Lett., 1992, 28(24): 2226-2228.
【8】Tamura K, Ippen E P, Haus H A, et al. 77 fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Opt. Lett., 1993, 18(13): 1080-1082.
【9】Ilday F O, Buckley J R, Clark W G, et al. Self-similar evolution of parabolic pulses in a laser[J]. Phys. Rev. Lett., 2004, 92(21): 213902.
【10】Sinclair L C, Coddington I, Swann W C, et al. Operation of an optically coherent frequency comb outside the metrology lab[J]. Opt. Expr., 2014, 22(6): 6996-7006.
【11】Peng J L, Ahn H, Shu R H, et al. Highly stable, frequency-controlled mode-locked erbium fiber laser comb[J]. Appl. Phys. B, 2007, 8(1): 49-53.
【12】Jiang T, Wang A, Wang G, et al. Tapered photonic crystal fiber for simplified Yb:fiber laser frequency comb with low pulse energy and robust fceo signal[J]. Opt. Expr., 2014, 22(2): 1835-1841.
【13】Dudley John M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Rev. Mod. Phys., 2006, 78(4): 1135-1184.
【14】Ma Ding, Cai Yue, Zhou Chun. 37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate[J]. Opt. Lett., 2010, 35(17): 2858-2860.
【15】Li Xing, Zou Weiwen, Chen Jianping. 34.3 fs pulse generation in an Er-doped fibre laser at 201 MHz repetition rate[J]. Electr. Lett., 2015, 51(4): 351-352.
【16】Tamura K, Nelson L E, Haus H A. Soliton versus nonsoliton operation of fiber ring lasers[J]. Appl. Phys. Lett., 1994, 64(2): 149-151.
【17】Li Pan, Shi Lei, Sun Qing, et al. 312 MHz, compact all-normal-dispersion Yb:fiber ring laser with an integrated WDM-ISO[J]. Chin. Opt. Lett., 2015, 13(3): 031403.
【18】Yang Xianglin. Optical Amplifier and Its Application (光放大器及其应用)[M]. Beijing: Publishing House of Electronics Industry, 2000 (in Chinese).
【19】Li Pan, Shi Lei, Sun Qing, et al. Influences of cavity dispersion distribution on the output pulse properties of an all-normal-dispersion fiber laser[J]. Chin. Phys. B, 2015, 24(7): 074207.
【20】Nelson L E, Jones D J, Tamura K, et al. Ultrashort-pulse fiber ring lasers[J]. Appl. Phys. B, 1997, 65(2): 277-294.
引用该论文
SHI Lei,MA Ting,WU Haoyu,Ma Jindong,LU Qiao,LI Pan,MAO Qinghe. 48 fs, 108 MHz dispersion-managed soliton Er3+-doped fiber laser[J]. Chinese Journal of Quantum Electronics, 2017, 34(3): 327-332
时雷,马挺,吴浩煜,马金栋,路桥,李磐,毛庆和. 48 fs, 108 MHz色散管理孤子掺Er3+光纤激光器[J]. 量子电子学报, 2017, 34(3): 327-332