首页 > 论文 > 光谱学与光谱分析 > 37卷 > 3期(pp:889-895)

室温下基于微等离子体放电发射光谱法检测甲烷

Emission Spectrometry for the Detection of Methane Based on Gas Ionization Discharge Microplasma at Room Temperature

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

建立了一套针板电极交流放电微等离子发生装置, 以氮气作为载气, 甲烷为分析气体, 放电电压为1.32 kV, 放电距离为3 mm, Pt丝和Pt/MWNT复合纳米粒子修饰FTO电极为放电电极, 放电频率为30 kHz, 功率消耗为13 W, 利用发射光谱法检测放电过程中产生的微等离子体发射光谱, 用于在室温下检测甲烷气体。 在交流电压下, 检测到甲烷的谱线有CH, C2和Hα, 以C2谱线作为甲烷分析线, 发现C2谱线强度与甲烷浓度在0.5%~4.0%(φ)的范围内呈线性, 检出限(S/N=3)为0.19%。 以Hα谱线为分析线, Hα谱线强度与甲烷浓度在0.1%~3.0 %(φ)范围内呈线性, 检测限(S /N=3)为0.03%(φ)。 对于3.2%的甲烷气体, 平行测定11次, 在Pt/MWNT/FTO电极上以C2谱线为分析线和以Hα谱线为分析线的相对标准偏差分别为 1.3%和1.9%。 说明Pt/MWNT 纳米复合材料修饰电极提高了分析方法的重现性和精密度。 以空气混合气体为稀释气体, 甲烷气体放电行为与纯氮气中放电行为有较大差异, C2峰消失, 只有Hα峰存在。 Hα峰强度与甲烷浓度在0.5%~4%范围内有线性相关性。 与其他的光发射光谱检测系统相比, 该系统装置尺寸小, 制备简单且在室温下操作。

Abstract

A microplasma-generating device was developed by using needle-plate electrode discharge with the incorporation a Pt/carbon nanotube (CNT) nanocomposite-decorated FTO electrode. When an alternating current voltage of 1.32 kV and a low power consumption of 13 W in nitrogen (N2) carrier gas are applied, the system can be applied to detect methane at room temperature. The main characteristic lines were assigned to CH, C2 and Hα during the discharge process of CH4 at room temperature.The emission intensity of C2 at 516 nm is linear with the concentration of CH4 from 0.5% to 4.0% (φ), and the detection limit (S/N=3) is 0.19% (φ). The emission intensity of Hα at 656 nm is linear with the concentration of CH4 from 0.1% to 3.0%(φ)with the detection limit (S/N=3) is 0.03% (φ). The relative standard deviation (RSD) is less than 2% from 11 repetitive analyses using 3.2% CH4. The Pt/CNT nanocomposite-modified FTO electrode exhibited enhanced sensing performance with precise, repeatability and linear correlation compared with that of the pure MWNT/FTO electrode and bare FTO electrode. When CH4 were discharged in air, the emission spectra of CH4 was different from that in N2. It was found that C2 peak was disappeared and the Hα intensity was also liner to the concentration of CH4 in the range of 0.5%~4%. The established system exhibited advantages with small size, simple fabrication and operation at room temperature compared to other detection system.

投稿润色
补充资料

中图分类号:O433.4

DOI:10.3964/j.issn.1000-0593(2017)03-0889-07

基金项目:国家自然科学基金项目(21505102)资助

收稿日期:2016-03-30

修改稿日期:2016-08-05

网络出版日期:--

作者单位    点击查看

申丽华:西安科技大学化学与化工学院, 陕西 西安 710054
王红妮:西安科技大学化学与化工学院, 陕西 西安 710054
陈培静:西安科技大学化学与化工学院, 陕西 西安 710054
于春侠:西安科技大学化学与化工学院, 陕西 西安 710054
邓皓南:西安科技大学化学与化工学院, 陕西 西安 710054
张成孝:陕西师范大学化学与化工学院, 陕西 西安 710062

联系人作者:申丽华(lihuashen1996@hotmail.com)

备注:申丽华, 女, 1977年生, 西安科技大学化工学院副教授

【1】Collins P G, Bradley K, Ishigami M, et al. Science, 2000, 287 (5459): 1801.

【2】Kong Jing, Franklin N R, Zhou Chongwu, et al. Science, 2000, 287: 622.

【3】Kauffman D R, Star A. Angewandte Chemie International Edition, 2008, 47(35): 6550.

【4】Zhang Ting, Mubeen S, Myung N V, et al. Nanotechnology, 2008, 19(33): 332001.

【5】Georgakilas V, Kordatos K, Prato M, et al. Journal of the American Chemical Society, 2002, 124 (5): 760.

【6】Foest R, Schmidt M, Becke K. International Journal of Mass Spectrometry, 2006, 248(3): 87.

【7】Han Bingjun, Jiang Xiaoming, Hou Xiandeng, et al. Anal. Chem., 2014, 86: 6214.

【8】Yu Yongliang, Du Zhuo, Chen Mingli, et al. Angewandte Chemie International Edition, 2008, 47: 7909.

【9】He Qian, Zhu Zhenli, Hu Shenghong, et al. Analy. Chem., 2012, 84: 4179.

【10】Shen Lihua, Chen Peijing, Zhang Chengxiao, et al. Sensors and Actuators B-Chemical, 2015, 215: 9.

【11】Wen Guangming, Zheng Jun, Zhao Chungui, et al. Enzyme and Microbial Technology, 2008, 43 (3): 257.

【12】Massie C, Stewart G, Gregor G M, et al. Sensors and Actuators B-Chemical, 2006, 113 (2): 830.

【13】Sun Ping, Jiang Yadong, Xie Guangzhong, et al. Sensors and Actuators B-Chemical, 2009, 141(1): 104.

【14】Kumar M K, Ramaprabhu S. Journal of Physical Chemistry B, 2006, 110(23): 11291.

【15】Wu Bohua, Hu Dan, Kuang Yinjie, et al. Angewandte Chemie International Edition, 2009, 48(26): 4751.

【16】Kado S, Urasaki K, Sekine Y, et al. Fuel, 2003, 82 (18): 2291.

【17】Yanguas-Gil A, Focke K, Benedikt J, et al. Journal of Applied Physics, 2007, 101(10): 103307.

【18】Civis S, Kubelík P, F erus M. Journal of Physical Chemistry A, 2012, 116: 3137.

【19】Hui Guohua, Wu Lili, Pan Min, et al. Chinese Journal of Analytical Chemistry, 2006, 34(12): 1813.

【20】Gonzalez I, Jesus Juan C D, Canizales E, et al. Journal of Physical Chemistry C, 2012, 116(40): 21577.

【21】Kong J H, Chapline M G, Dai H J. Advanced Materials, 2001, 32(49): 1384.

【22】Zhao Jijun, Buldum A, Han Jie, et al. Nanotechnology, 2002, 13(2): 195.

【23】Liu N N, Bai M D, Wang M X, et al. Journal of Physics: Conference Series, 2013, 418 (1): 012146.

【24】SHEN Li-hua, YU Chun-xia, YAN Bei, et al(申丽华, 于春侠, 闫 蓓, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(3): 791.

引用该论文

SHEN Li-hua,WANG Hong-ni,CHEN Pei-jing,YU Chun-xia,DENG Hao-nan,ZHANG Cheng-xiao. Emission Spectrometry for the Detection of Methane Based on Gas Ionization Discharge Microplasma at Room Temperature[J]. Spectroscopy and Spectral Analysis, 2017, 37(3): 889-895

申丽华,王红妮,陈培静,于春侠,邓皓南,张成孝. 室温下基于微等离子体放电发射光谱法检测甲烷[J]. 光谱学与光谱分析, 2017, 37(3): 889-895

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF