首页 > 论文 > 强激光与粒子束 > 29卷 > 8期(pp:85002--1)

微放电等离子体多负辉区结构融合过程数值模拟研究

Numerical simulation of multiple negative glow regions in micro discharge plasma

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高气压下的微型电热推进器(MPT)中的放电等离子体存在多负辉区结构, 其负辉区有融合趋势。对矩形微放电等离子体推进器(RMPT)的负辉区融合过程进行了二维模拟分析, 在方法上采用了非平衡态的自洽流体模型, 并考虑了离子电流加热和三体碰撞过程。结果显示:矩形微放电等离子体推进器(RMPT)在低电流条件下存在两个稳定的负辉区, 当超过某一电流阈值条件后, 两个负辉区会在腔体中心重合。分析了这一过程的成因, 认为其融合过程本质上是空心阴极的导通过程, 其融合与否与鞘层电压有关。

Abstract

The discharge plasma in the rectangular micro hollow cathode (RMHCD) under high pressure has a multiple negative glow region structure, and the negative glow regions have a tendency of fusion, which can significantly increase the ionization efficiency. The gas is confined in the cavity, which can be effectively heated, and thus can be applied to micro-electric plasma thruster (MPT). In this paper, the 2D x-y cross-section of a rectangular micro-discharge plasma thruster (RMPT) is simulated and analyzed, and a self-consistent fluid model with non-equilibrium state is adopted in the method. The ion current heating and the three-body collision are also considered. The results show that the RMPT has two stable negative glow regions under low current conditions. When a certain current threshold is exceeded, the two negative glow regions will merge at the center of the cavity. Corresponding analysis suggests that the fusion process is essentially a hollow cathode conduction process, whether or not the fusion of negative glow regions occurs is related to sheath voltage.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O539

DOI:10.11884/hplpb201729.170047

所属栏目:脉冲功率技术

基金项目:国家自然科学基金项目(11571293, 1160518)

收稿日期:2017-02-02

修改稿日期:2017-03-06

网络出版日期:--

作者单位    点击查看

杨 龙:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
王 强:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
阚明先:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
段书超:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999
王刚华:中国工程物理研究院 流体物理研究所, 四川 绵阳 621999

联系人作者:杨龙(540466356@qq.com)

备注:杨 龙(1988-), 男, 硕士, 从事等离子体以及磁流体研究。

【1】Schoenbach K H, Verhappen R, Tessnow T, et al. Microhollow cathode discharges[J]. Applied Physics Letters, 1996, 68(1): 13-15.

【2】He Feng, He Shoujie, Zhao Xiaofei. Study of the discharge mode in micro-hollow cathode[J]. Plasma Science and Technology, 2012, 14(12): 1079-1083.

【3】Fukuhara D, Namba S, Kozue K, et al. Characterization of a microhollow cathode discharge plasma in helium or air with water vapor[J]. Plasma Science and Technology, 2013, 15(3): 129-132.

【4】哈静, 谷延霞, 刘立芳. 微空心阴极放电时空特性[J]. 强激光与粒子束, 2014, 26: 054004.(Ha Jing, Gu Yanxia, Liu Lifang. Temporal and spatial characteristics of micro-hollow cathode discharge. High Power Laser and Particle Beams, 2014, 26: 054004)

【5】荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. (Rong Mingzhe, Liu Dingxin, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasmas. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282)

【6】李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. (Li Heping, Yu Daren, Sun Wenting, et al. State-of-the-art of atmospheric discharge plasmas. High Voltage Technology, 2016, 42(12): 3697-3727)

【7】欧阳吉庭, 张宇, 秦宇. 微放电及其应用[J]. 高电压技术, 2016, 42(3): 673-685. (Ouyang Jiting, Zhang Yu, Qin Yu. Micro-discharge and its applications. High Voltage Technology, 2016, 42(3): 673-685)

【8】夏广庆, 毛根旺, 陈茂林, 等. 微空心阴极放电推力器性能研究[J]. 强激光与粒子束, 2010, 22(5): 1145-1148. (Xia Guangqing, Mao Genwang, Chen Maolin, et al. Performance of microhollow cathode discharge thruster. High Power Laser and Particle Beams, 2010, 22(5): 1145-1148)

【9】郑培超, 王金梅, 胡章芳, 等. 大气压微等离子体放电特性研究[J]. 高压电器, 2010, 46(5): 18-21. (Zheng Peichao, Wang Jinmei, Hu Zhangfang, et al. Electrical characteristics of atmospheric pressure microplasma discharge.High Voltage Apparatus, 2010,46(5): 18-21)

【10】黄平, 汪伟, 张宏亮, 等. 局部放电混沌分析方法的研究现状及发展[J]. 高压电器, 2009,45(1): 89-94. (Huang Ping, Wang Wei, Zhang Hongliang, et al. Current status and development of chaotic analysis of partial discharge. High Voltage Apparatus, 2009, 45(1): 89-94)

【11】Benedikt J, Raballand V, Yanguas-Gil A, et al. Thin film deposition by means of atmospheric pressure microplasma jet[J]. Plasma Physics and Controlled Fusion, 2007, 49(12B): B419-B427.

【12】Sankaran R M, Giapis K P. Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition[J]. Journal of Applied Physics, 2002, 92(5): 2406-2411.

【13】Frame J W, Wheeler D J, DeTemple T A, et al. Microdischarge devices fabricated in silicon[J]. Appl Phys Lett, 1997, 71(9): 1165-1167.

【14】Kurunczi P, Martus K E, Becker K. Neon excimer emission from pulsed high-pressure microhollow cathode discharge plasmas[J]. International Journal of Mass Spectrometry, 2003, 223/224(2): 37-43.

【15】Donko′ Z. Hybrid model of a rectangular hollow cathode discharge[J]. Physical Review E, 1998, 57(6): 7126-7137.

【16】He S J, Ouyang J T, He F, et al. Numerical study on rectangular microhollow cathode discharge[J]. Physics of Plasma, 2011, 18(3): 1683.

【17】Boeuf J P, Pitchford L C, Schoenbach K H. Predicted properties of microhollow cathode discharges in xenon[J]. Appl Phys Lett, 2005, 86: 071501.

【18】Deconinck T, Raja L. Modeling of mode transition behavior in argon microhollow cathode discharges[J]. Plasma Processes and Polymers, 2009, 6(5): 335-346.

【19】Kothnur P S, Raja L L. Two-dimensional simulation of a direct-current microhollow cathode discharge[J]. Appl Phys, 2005, 97(4): 043305.

【20】Kozyrev A V, Kozhevnikov V Y, Semeniuk N S, et al. Theoretical simulation of a gas breakdown initiated by external plasma source in the gap with combined metal-dielectric electrodes[J]. IEEE Trans Plasma Science, 2015, 43(8): 2294-2298.

【21】Comsol Multiphysics. Plasma module users guide\[EB/OL\]. Available http: //www.comsol.com/plasma-module.

【22】Lay B, Moss R S, Rauf S, et al. Breakdown processes in metal halide lamps[J]. Plasma Sources Sci Technol, 2003, 12(1): 8-21.

【23】Hagelaar G J M, Pitchford L C, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Sci Technol, 2005, 14(4): 722-733.

【24】Brezmes A O, Breitkopf C. Fast and reliable simulations of argon inductively coupled plasma using COMSOL[J]. Vacuum, 2015, 116: 65-72.

【25】Grigoriev I S, Meilikov E Z, Radzig A A. Handbook of physical quantities[M]. London: CRC Press, 1997.

【26】Hsu D D, Graves D B. Microhollow cathode discharge stability with flow and reaction[J]. Phys D: Appl Phys, 2003, 36(23): 2898-2907.

【27】Aubert X, Bauville G, Guillon J, et al. Analysis of the self-pulsing operating mode of a microdischarge[J]. Plasma Sources Sci Technol, 2007, 16(1): 23-32.

【28】Sismanoglu B N, Amorim J. Microhollow cathode discharge and breakdown in micron separations[J]. The European Physical Journal Applied Physics, 2008, 41(2): 165-172.

引用该论文

Yang Long,Wang Qiang,Kan Mingxian,Duan Shuchao,Wang Ganghua. Numerical simulation of multiple negative glow regions in micro discharge plasma[J]. High Power Laser and Particle Beams, 2017, 29(8): 085002

杨 龙,王 强,阚明先,段书超,王刚华. 微放电等离子体多负辉区结构融合过程数值模拟研究[J]. 强激光与粒子束, 2017, 29(8): 085002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF