基于多向联合交汇的柔性视觉形貌测量新方法
Flexible vision shape measurement by multi-way combination intersection
摘要
针对大尺寸物体形貌测量应用, 设计一种视觉形貌测量新方法。该方法是将两套没有公共视场的单目视觉传感器组合起来联合交汇, 分别用于位姿测量和单目多位置交汇测量。位姿测量通过求解PnP问题为单目多位置交汇测量提供位姿信息。单目多位置交汇测量利用位姿测量提供的辅助信息通过光束平差解算出待测物的形貌。分析了系统原理, 给出位姿测量PnP算法实现过程, 介绍了非公共视场相机的标定方法原理, 分析了单目多位置交汇测量的原理并给出实现方法。最后进行了测量方法的验证实验, 实验结果表明, 在3 m×3 m的工作范围内系统测量精度为5 mm, 证明该方法可以用于大尺寸物体形貌测量, 且结构简单轻便, 具有很强的灵活性。
Abstract
This paper describes new vision measurement method for shape measurement of large-size object. Combine and intersect two monocular vision measurement systems without public filed of view for measurements of pose estimation and monocular vision intersection respectively. Pose estimation system solves the PnP problem to provide position information for monocular measurement. Monocular measurement system combining with auxiliary information from pose estimation calculates shape information of object. This paper analyses the system principle, gives PnP algorithm’s implementation process of pose estimation system, and introduces the principle and implementation process of calibration method for camera without public field of view. Finally, static system verification test of measurement system of indoor large-size object has been carried out, and the feasibilities of this system have been validated. Experimental results show that measuring accuracy of system is 5 mm in the scope of the 3 m×3 m. It is proved that this system can be used in shape measurement of large-size object, and the structure of system is simple and light with great flexibility.
中图分类号:TH741
所属栏目:光学计量与测试
基金项目:国家重大科学仪器设备开发专项子任务(2013YQ35074702); 国家自然科学基金青年基金(51405338)
收稿日期:2016-08-08
修改稿日期:2016-11-03
网络出版日期:--
作者单位 点击查看
杨凌辉:天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
林嘉睿:天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
郭 寅:天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
联系人作者:景江(jingjiang_1992@163.com)
备注:景江(1992- ) 男, 宁夏吴忠人, 硕士研究生, 主要从事大尺寸精密测量方面的研究。
【1】Rosin P L. Shape-measuring the orientability of shapes[J]. Lecture Notes in Computer Science, 2007,4673: 620-627.
【2】Wu Bin, Study on the key technologies of 3D digital measurement of large-scale objects [D]. Tianjin: Tianjin University, 2002.
吴斌, 大型物体三维形貌数字化测量关键技术研究[D]. 天津: 天津大学, 2002.
【3】Huang Guiping, Qin Guiqin, Lu Chengjing. Testing and application of the digital close-range photogrammetry for the large scale 3-D measurement V-STARS[J]. Journal of Astronsutic Metrology and Measurement, 2009, 02: 5-9+22.
黄桂平, 钦桂勤, 卢成静. 数字近景摄影大尺寸三坐标测量系统V-STARS的测试与应用[J]. 宇航计测技术,2009,02: 5-9+22.
【4】Beijing Tian Yuan three dimensional Technology Co, ltd. Digimetric. Three dimensional photogrammetry system[EB/OL]. Beijing: Tian Yuan three dimen sional technology co, 1td, 2016[2016-08-08]. http: //www.3dscan.com.cn.
北京天远三维科技有限公司, Digimetric, 三维摄影测量系统[EB/OL]. http: //www.3dscan.com.cn.
【5】Liang Jin, Xiao Zhenzhong, Zang Shunlai, et al. Study on 3D optical points dense cloud measuring system based on heterodyne multiple frequency phase shift technology[J].Forging & Stamping Technology, 2008,33(1): 143-147.
梁晋,肖振中,臧顺来,等.外差式多频相移技术的三维光学点云测量研究[J]. 锻压技术, 2008,33(1): 143-147.
【6】Ren Tongqun. The study on high-accuracy mosaic for large 3D free-form measurement[D].Tianjin: Tianjin University, 2008.
任同群.大型3D形貌测量高精度拼接方法与技术研究[D].天津: 天津大学,2008.
【7】Fischlerand M, Bolles R. Random sample consensus: a paradigm for model fittingwith applications to image analysis and automated cartography[J]. Communicationsof the ACM, 1981, 24: 381-385.
【8】Xia Junying. Researches on monocular vision based pose measurements for space targets[D].Changsha: Graduate School of National University of Defense Technology,2012.
夏军营. 空间目标的单目视觉位姿测量方法研究[D].长沙: 国防科学技术大学, 2012.
【9】Wu Fuchao, Hu Zhanyi. A linear method for the PnP problem.[J] Journal of Software, 2003,14(3): 682-688.
吴福朝,胡占义.PnP问题的线性求解算法[J]. 软件学报, 2003,14(3): 682-688.
【10】Zheng Y, Kuang Y, Sugimoto S, et al. Revisiting the PnP problem: a fast, general and optimal solution [C]. sydney: Computer Vision(ICCV), 2013 IEEE International Conference on, 2013: 2344-2351.
【12】Lowe D G. Fitting parameterized three-dimensional modelstoImages [J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 1991, 13(5): 441-450.
【13】Guo Lei. Study on key techniques of precision portable vision metrology[D].Tianjin: Tianjin University, 2011.
郭磊. 移动视觉精密测量关键技术研究[D].天津: 天津大学, 2011.
【14】Zhu Jigui, Yu Zhijing. The principle of vision metrology[M]. Beijing: China Machine Press, 2012: 10-25.
邾继贵,于之靖.视觉测量原理与方法[M].北京: 机械工业出版社, 2012: 10-25.
引用该论文
Jing Jiang,Yang Linghui,Lin Jiarui,Guo Yin. Flexible vision shape measurement by multi-way combination intersection[J]. Journal of Applied Optics, 2017, 38(3): 438-444
景 江,杨凌辉,林嘉睿,郭 寅. 基于多向联合交汇的柔性视觉形貌测量新方法[J]. 应用光学, 2017, 38(3): 438-444
被引情况
【1】吴庆华,陈慧,朱思斯,周阳,万偲. 一种多相机阵列大尺寸测量系统快速标定方法. 光学学报, 2018, 38(12): 1215002--1