应用光学, 2017, 38 (3): 514, 网络出版: 2017-06-30   

基于光谱合束技术的透射光栅模拟设计

Simulation design of transmission grating based on spectral beam combining technique
作者单位
长春理工大学 高功率半导体激光国家重点实验室, 吉林 长春 130022
摘要
半导体激光器光谱合束技术能够实现近衍射极限的高功率激光输出, 已成为当前研究热点。衍射光栅的性能直接决定光谱合束的激光输出效果。模拟设计了一种针对940 nm波长、熔融石英材料的亚波长透射光栅。基于严格耦合波理论对光栅结构进行初步设计, 运用Rsoft软件依次对光栅占空比、脊高和周期等参数进行优化确定, 同时分析了各个参数对光栅衍射效率的影响。所设计的透射式光栅实现第-1级衍射级次的波分复用功能, 衍射效率达到91.2%(TE模式), 同时压缩其他衍射级次, 使其衍射效率降到1.2%以下。同时在光栅入射角度59°±3°范围内保持90%以上的衍射效率, 实现高功率激光输出的同时具有较高的误差容错率, 易于调节, 满足光谱合束技术的要求。
Abstract
Semiconductor laser beam splitting technology can achieve near-diffraction limit of high-power laser output, and has become the current research focus. Performance of diffraction grating directly determines laser output effect of spectral beam. A sub wavelength transmission grating for 940nm wavelength and fused silica material is simulated and designed. Based on strictly coupled wave theory, grating structure is designed, and parameters such as grating duty cycle, ridge height and period are optimized by Rsoft software. Influence of each parameter on diffraction efficiency of grating is also analyzed simultaneously. Designed diffraction grating achieves wavelength division multiplexing function of -1 diffraction order, diffractive efficiency reaches 91.2% for TE mode, and diffraction efficiency is reduced to 1.2% or less by compressing other diffraction orders. Diffraction efficiency of 90% or more is maintained within range of grating incidence angle of 59°± 3°, meanwhile high power laser output has high error tolerance, and is easy to adjust to meet requirements of spectral beam combination technology.

张俊明, 吴肖杰, 马晓辉, 张贺, 邹永刚. 基于光谱合束技术的透射光栅模拟设计[J]. 应用光学, 2017, 38(3): 514. Zhang Junming, Wu Xiaojie, Ma Xiaohui, Zhang He, Zou Yonggang. Simulation design of transmission grating based on spectral beam combining technique[J]. Journal of Applied Optics, 2017, 38(3): 514.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!