首页 > 论文 > 红外与激光工程 > 46卷 > 4期(pp:406003--1)

0.53 μm全固态激光器热效应及其补偿技术研究

Study on thermal effect and compensation technology of 0.53 μm all-solid-state laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于0.53 μm、1.06 μm激光双波长复合输出技术在军事上的应用前景, 针对光电对抗双波长复合输出激光器的热效应, 利用泊松热传导理论, 考虑晶体与外界的热交换, 建立了更精确的边界条件, 仿真分析了三向泵浦、内腔倍频情况下激光晶体热透镜效应和倍频晶体热致相位失配的形成过程, 分析讨论了平凸腔补偿热透镜效应的有效性和一般规律。通过实验探究了热效应对双波长复合激光光束质量的影响, 验证了平凸腔对热效应的补偿效果, 发现平凸腔能增大基模模体积, 抑制高阶模增益, 改善复合激光光束质量, 热效应补偿效果会随着补偿平凸镜曲率半径的减小而增强。

Abstract

Based on the application prospect of 0.53 μm and 1.06 μm dual-wavelength composite output technology in military affairs, the thermal effect of all-solid-state dual-wavelength composite output laser was studied. Using Poisson heat conduction theory with more accurate boundary conditions, the formation process of thermal lens effect and thermal induced phase-mismatch was simulated and analyzed under the conditions of three LD side-pumping and intracavity frequency-doubling. Effectiveness and general regularity of the plano-convex cavity compensation were then analyzed. Through the experiment, the influence of thermal effect on the beam quality of dual-wavelength laser was explored. Compensation effect of plano-convex cavity on thermal effect was verified. It shows that the quality of composite laser beam improves with larger fundamental mode volume and lower higher-order mode gain in plano-convex cavity. The thermal effect compensation will be enhanced with the decrease of the curvature radius of the plano-convex lens compensation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN216

DOI:10.3788/irla201746.0406003

所属栏目:激光技术及应用

收稿日期:2016-08-05

修改稿日期:2016-09-03

网络出版日期:--

作者单位    点击查看

王 磊:脉冲功率激光技术国家重点实验室(电子工程学院), 安徽 合肥 230037
聂劲松:脉冲功率激光技术国家重点实验室(电子工程学院), 安徽 合肥 230037
叶 庆:脉冲功率激光技术国家重点实验室(电子工程学院), 安徽 合肥 230037
胡瑜泽:脉冲功率激光技术国家重点实验室(电子工程学院), 安徽 合肥 230037

联系人作者:王磊(1456618912@qq.com)

备注:王磊(1991-), 男, 硕士生, 主要从事固态激光技术方面的研究。

【1】Dong Yantao, Zhao Zhigang, Liu Chong, et al. Influence of thermal effects on polarizability and output character of TEM00-mode of solid state laser[J]. Chinese J Lasers, 2009, 36(7): 1759-1765. (in Chinese)
董延涛, 赵智刚, 刘崇, 等. 热效应对固体激光器偏振特性和基模输出特性的影响[J]. 中国激光, 2009, 36(7): 1759-1765.

【2】Eichler H J, Haase R M, Ralf Menzel, et al. Thermal lensing and depolarization in a highly pumped Nd:YAG laser amplifier[J]. J Phys D: Appl Phys, 1993, 26: 1884-1891.

【3】Xie Wenjie, Tam Siuchung, Lam Yeeloy, et al. Influence of the thermal effect on the TEM00 mode output power of a laser-diode side-pumped solid-state laser[J]. Appl Opt, 2000, 39(30): 5482-5497.

【4】Li Long, Liu Xiaojian, Nie Jianping, et al. Thermal effect of intra-cavity frequency doubling KTP crystal in all-solid-state multi-mode green laser[J]. Infrared and Laser Engineering, 2011, 40(5): 830-834. (in Chinese)
李隆, 刘小建, 聂建萍, 等. 全固态多模绿光激光器腔内倍频 KTP晶体热效应[J]. 红外与激光工程, 2011, 40(5):830-834.

【5】Li Long, Shi Peng, Bai Jintao, et al. Semi-analytical thermal annlysis of high power Nd:YAG/KTP intracavity doubling crystal[J]. Optical Technology, 2004, 30(1): 44-47. (in Chinese)
李隆, 史彭, 白晋涛, 等. 高功率 Nd:YAG/KTP腔内倍频晶体温度分布的半解析热分析[J]. 光学技术, 2004, 30(1):44-47.

【6】Shi Peng, Chen Wen. Thermal effect of circular composite YAG-Nd:YAG laser crystal by diode laser end-pumped[J]. Infrared and Laser Engineering, 2006, 35(S): 217-221. (in Chinese)
史彭, 陈文. LD 端面抽运圆形YAG-Nd:YAG 复合晶体热效应[J]. 红外与激光工程, 2006, 35(S): 217-221.

【7】Zhang Yinke, He Yanping, Zan Huiping, et al. Influence of heat transfer on thermal effects of the end-pumped laser crystal[J]. Optoelectronic Letters, 2010, 6(6): 439-442.

【8】Li Jian, Chen Feng, Zhang Haijuan, et al. Research of quasi-three-level thermal effect of laser-diode-pumped Nd:YAG crystal[J]. Chinese J Lasers, 2010, 37(9): 2404-2408. (in Chinese)
李建, 陈锋, 张海娟, 等. 激光二极管抽运Nd:YAG晶体准三能级的热效应研究[J]. 中国激光, 2010, 37(9):2404-2408.

【9】Zhang Shuaiyi, Huang Chunxia, Yu Guolei, et al. Thermal effect of laser crystal by laser diode end-pumped[J]. Chinese J Lasers, 2008, 35(3): 333-337. (in Chinese)
张帅一, 黄春霞, 于果蕾, 等. 激光二极管端面抽运激光晶体的热效应[J]. 中国激光, 2008, 35(3): 333-337.

【10】Koechner W. Solid-State Laser Engineering[M]. USA: Springer, 2006: 393-407.

【11】Sutton S B, Albrecht G F. Simple analytical method to calculate the radial energy deposition profile in an isotropic diode-pumped solid-state laser rob[J]. Appl Opt, 1996, 35(30): 5937-5948.

【12】Kato K, Takaoka E. Sellmeier and thermo-optic dispersion formulas for KTP[J]. Applied optics, 2002, 41(24): 5040-5044.

【13】Yao Jianquan. Nonlinear Optical Frequency Conversion and Laser Tuning Technology[M]. Beijing: Science Press, 1995. (in Chinese)
姚建铨. 非线性光学频率变换及激光调谐技术[M]. 北京: 科学出版社, 1995.

【14】Zhou Bingkun, Gao Yizhi, Cheng Tangrong, et al. Laser Principle[M]. Beijing: National Defense Industry Press, 2000. (in Chinese)
周炳琨, 高以智, 陈倜嵘, 等. 激光原理[M]. 北京: 国防工业出版社, 2000.

【15】Tong Lixin, Gao Qingsong, Jiang Jianfeng, et al. Research of thermal effects compensation of high power diode laser module[J]. High Power Laser And Particle Beams, 2005, 17(S0): 125-128. (in Chinese)
童立新, 高清松, 蒋建锋, 等. 高功率二极管泵浦模块热效应补偿研究[J]. 强激光与粒子束, 2005, 17(S0): 125-128.

【16】Zhao Cunhua, Wang Jinyan. Theoretical optimum extremity radius ground of laser rod to compensate thermal effects[J]. Acta Optica Sinica, 2007, 36(B6): 84-86. (in Chinese)
赵存华, 王金艳. 弥补激光棒热透镜的最佳端面研磨半径理论计算[J] 光子学报, 2007, 36(B6): 84-86.

引用该论文

Wang Lei,Nie Jinsong,Ye Qing,Hu Yuze. Study on thermal effect and compensation technology of 0.53 μm all-solid-state laser[J]. Infrared and Laser Engineering, 2017, 46(4): 0406003

王 磊,聂劲松,叶 庆,胡瑜泽. 0.53 μm全固态激光器热效应及其补偿技术研究[J]. 红外与激光工程, 2017, 46(4): 0406003

被引情况

【1】叶庆,范一松,卞进田,俞峰,苏锐. 适用于水下同步照明的灯泵浦绿光激光器研制. 光子学报, 2018, 47(11): 1114004--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF