首页 > 论文 > 激光与光电子学进展 > 54卷 > 7期(pp:72501--1)

基于界面算子-同伦法对有损耗的金属光子晶体能带结构的分析

Energy Band Structure Analysis of Lossy Metallic Photonic Crystals Based on Interfacial-Operator-Homotopy Approach

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

求解分析了有损耗情况下二维金属光子晶体的能带结构。在无损耗自由电子模型下,利用界面算子法得到了横磁模式和能带结构。考虑有损耗的Drude模型,并引入同伦法对本征频带进行修正,得到其相应的虚部。结果表明,损耗在表面等离子体频率处存在一个极大值;当频率改变时,损耗急剧减小,并随着倒格矢量值的变化而改变。即使考虑金属损耗,实部频率变化不明显。界面算子法与同伦法的结合为金属光子晶体的研究提供了较好的技术支持。

Abstract

The energy band structure of a lossy 2D metallic photonic crystal is solved and analysed. The transverse magnetic mode and energy band structure are obtained under the non-lossy free-electron model with the interfacial operator approach. When the Drude model with loss is considered and the homotopy method is employed to correct the eigen-frequency, the corresponding imaginary parts are obtained. The results show that the loss reaches the maximum value at the surface plasma frequency. When the frequency changes, the loss diminishes rapidly and varies with the change of reciprocal-lattice vector value. Even though the metal loss is considered, the real part of the eigen-frequency changes a little. The combination of the interfacial operator approach and the homotopy method provides an efficient technique support for the study of metallic photonic crystals.

投稿润色
补充资料

中图分类号:O734;0485

DOI:10.3788/lop54.072501

所属栏目:光电子学

基金项目:国家自然科学基金(11672077)、广西自然科学基金(2015jjDA60007)

收稿日期:2017-03-10

修改稿日期:2017-03-17

网络出版日期:--

作者单位    点击查看

徐海龙:广西大学材料科学与工程学院, 广西 南宁 530004
张建成:广西大学材料科学与工程学院, 广西 南宁 530004

联系人作者:徐海龙(xuhailong_gxu@163.com)

备注:徐海龙(1992—),男,硕士研究生,主要从事等离子体方面的研究。

【1】Ritchie R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957, 106(5): 874-881.

【2】Pendry J B, Martín-Moreno L, Garcia-Vidal F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847-848.

【3】Kitson S C, Barnes W L, Sambles J R. Full photonic band gap for surface modes in the visible[J]. Physical Review Letters, 1996, 77(13): 2670-2673.

【4】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

【5】Boriskina S V, Ghasemi H, Chen G. Plasmonic materials for energy: From physics to applications[J]. Materials Today, 2013, 16(10): 379-390.

【6】Schuller J A, Barnard E S, Cai W, et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 2010, 9(3): 193-204.

【7】Yan B, Boriskina S V, Reinhard B M. Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing[J]. Journal of Physical Chemistry C, 2011, 115(50): 24437-24453.

【8】Mokkapati S, Beck F J, Polman A, et al. Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells[J]. Applied Physics Letters, 2009, 95(5): 053115.

【9】Laroche M, Carminati R, Greffet J J. Near-field thermophotovoltaic energy conversion[J]. Journal of Applied Physics, 2006, 100(6): 063704.

【10】Gopinath A, Boriskina, et al. Enhancement of the 1.54 μm Er3+ emission from quasiperiodic plasmonic arrays[J]. Applied Physics Letters, 2010, 96(7): 071113.

【11】Mubeen S, Hernandezsosa G, Moses D, et al. Plasmonic photosensitization of a wide band gap semiconductor: Converting plasmons to charge carriers[J]. Nano Letters, 2011, 11(12): 5548-5552.

【12】Mukherjee S, Libisch F, Neumann O, et al. Hot electrons do the impossible: Plasmon-induced dissociation of H2 on Au[J]. Nano Letters, 2013, 13(1): 240-247.

【13】Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413.

【14】Shi Zhendong, Zhao Haifa, Liu Jianlong, et al. Design of a metallic waveguide all-optical switch based on surface plasmon polaritons[J]. Acta Optica Sinica, 2015, 35(2): 0213001.
石振东, 赵海发, 刘建龙, 等. 基于表面等离激元的金属波导全光开关设计[J].光学学报, 2015, 35(2): 0213001 .

【15】Shi Weihua, Wu Jing. Photonic crystal fiber sensor based on surface plasmonic and directional resonance coupling[J]. Acta Optica Sinica, 2015, 35(2): 0206002.
施伟华, 吴 静. 基于表面等离子体共振和定向耦合的光子晶体光纤传感器[J]. 光学学报, 2015, 35(2): 0206002.

【16】Wei Lai, Li Fang, Zhou Jianxin. Design of surface plasmon polariton nano-laser[J]. Acta Photonica Sinica, 2016, 45(10): 1014004.
魏 来, 李 芳, 周剑心. 基于表面等离子体激元的纳米激光器设计[J]. 光子学报, 2016, 45(10): 1014004.

【17】Chang C C, Chern R L, Chang C C, et al. Interfacial operator approach to computing modes of surface plasmon polaritons for periodic structures[J]. Physical Review B, 2005, 20(20): 205112.

【18】Chang C C, Shu Y C, Chern I L. Solving guided wave modes in plasmonic crystals[J]. Physical Reviews B, 2008, 78(3): 035133.

【19】Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes[M]. 3rd Edition, New York: Cambridge University Press, 2007: 577-599.

【20】Han V D L, Tip A, Moroz A. Band structure of absorptive two-dimensional photonic crystals[J]. Journal of the Optical Society of America B, 2003, 20(6): 1334-1341.

引用该论文

Xu Hailong,Zhang Jiancheng. Energy Band Structure Analysis of Lossy Metallic Photonic Crystals Based on Interfacial-Operator-Homotopy Approach[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072501

徐海龙,张建成. 基于界面算子-同伦法对有损耗的金属光子晶体能带结构的分析[J]. 激光与光电子学进展, 2017, 54(7): 072501

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF