首页 > 论文 > 中国激光 > 44卷 > 7期(pp:702004--1)

激光金属沉积堆高闭环控制研究

Research of Closed-Loop Control of Deposition Height in Laser Metal Deposition

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

激光金属沉积(LMD)传统上多采用固定的工艺参数进行扫描堆积成形, 每层的实际堆积高度一般是固定且不可控的。为提高成形稳定性和成形件的精度, 补偿堆高误差, 开发了一种可实时变化工艺参数的堆高闭环控制系统。通过反馈实际堆高与设定期望层高之间的误差, 控制实际堆高达到设定值。设计P和PI两种控制器, 分别以扫描速度和激光功率作为输入参量来控制实际堆高。结果表明, 变扫描速度控制优于变激光功率控制, 实际层高的最佳稳态波动范围可达±0.015 mm; PI控制器可使总堆高达到期望值; 当送粉速率发生突变时, P控制系统具有良好的鲁棒性; P控制器的阶跃响应曲线与成形件剖面纹理显示的堆高变化一致。该系统为堆高的可控和堆高误差补偿提供了新方法。

Abstract

In laser metal deposition (LMD), fixed process parameters are mostly used during the deposition. The actual deposition height of each layer is generally fixed and uncontrollable. In order to improve forming stability and accuracy of the forming parts, and compensate the error of deposition height, a real time closed-loop control system of deposition height with variable process parameters is development. The actual deposition height is controlled by means of the feedback of the error between actual deposition height and the set desired layer height. Both P-controller and PI-controller are designed, and scanning speed and laser power as input variables are implemented respectively to control the actual deposition height. The experimental results indicate that the variable scanning speed control is better than variable laser power control. The best fluctuation range of the actual deposition height is ±0.015 mm. The total deposition height can achieve the desired total layer height using PI-controller. If the powder feeding rate changes abruptly, the P-control system has a nice robustness. The sectional view of cladding layer texture shows the variable deposition heights, which are in accord with the step response curve of P-controller. The system provides a new method to control deposition height and to compensate deposition error.

投稿润色
补充资料

中图分类号:TN249

DOI:10.3788/cjl201744.0702004

所属栏目:激光制造

基金项目:国家重点研发计划(2016YFB1100304)、国家自然科学基金(51675359)

收稿日期:2016-12-02

修改稿日期:2017-03-20

网络出版日期:--

作者单位    点击查看

石拓:西安交通大学机械工程学院, 陕西 西安 710049
卢秉恒:西安交通大学机械工程学院, 陕西 西安 710049
魏正英:西安交通大学机械工程学院, 陕西 西安 710049
周亮:苏州大学机电工程学院, 江苏 苏州 215021
石世宏:苏州大学机电工程学院, 江苏 苏州 215021

联系人作者:石拓(tuo.shi@qq.com)

备注:石拓(1984-), 男, 博士研究生, 主要从事激光熔覆快速成形方面的研究。

【1】Choi J, Chang Y. Characteristics of laser aided direct metal/material deposition process for tool steel[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4): 597-607.

【2】Mazumder J, Dutta D, Kikuchi N, et al. Closed loop direct metal deposition: art to part[J]. Optics and Lasers in Engineering, 2000, 34(4): 397-414.

【3】Huang Weidong. Laser solid forming technology: rapid freeform fabrication of high performance and compact metallic component[M]. Xi′an: Northwestern Polytechnical University Press, 2007.
黄卫东. 激光立体成形: 高性能致密金属零件的快速自由成形[M]. 西安: 西北工业大学出版社, 2007.

【4】Du Qiu, Hang Xiaolin, Wang Mingdi, et al. Mechanism and experimental study of laser milling on laser cladding parts[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101403.
杜 秋, 杭小琳, 王明娣, 等. 激光铣削对激光熔覆成形件的整形机理和实验研究[J]. 激光与光电子学进展, 2015, 52(10): 101403.

【5】Jiang Yuejuan, Lu Bingheng, Fang Xuewei, et al. 3D printing-based internet collect-manufacturing mode[J]. Computer Integrated Manufacturing System, 2016, 22(6): 1424-1433.
姜月娟, 卢秉恒, 方学伟, 等. 基于3D打印的网络化集散制造模式研究[J]. 计算机集成制造系统, 2016, 22(6): 1424-1433.

【6】Santos E C, Shiomi M, Osakada K, et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 2006, 46(12): 1459-1468.

【7】Lin Hui, Yang Yongqiang, Zhang Guoqing, et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting[J]. Acta Optica Sinica, 2016(11): 1114003.
林 辉, 杨永强, 张国庆, 等. 激光选区熔化医用钴铬钼合金的摩擦性能[J]. 光学学报, 2016(11): 1114003.

【8】Wu Jizhuo, Zhu Gangxian, Lu Bin, et al. Influence of self-regulation-effect on forming quality of thin-walled parts with variable laser spot cladding[J]. Journal of Xi′an Jiaotong University, 2016, 50(1): 145-150.
吴继琸, 朱刚贤, 陆 斌, 等. 自愈合效应对光内送粉激光变斑熔覆成形薄壁件的影响[J]. 西安交通大学学报, 2016, 50(1): 145-150.

【9】Xie Hongmei. Process study and profile prediction on laser cladding of titanium alloys[D]. Dalian: Dalian University of Technology, 2014.
谢红梅. 钛合金激光熔覆工艺与形貌预测研究[D]. 大连: 大连理工大学, 2014.

【10】Jiang Shujuan, Liu Weijun, Nan Liangliang. Laser cladding height prediction based on neural network[J]. Chinese Journal of Mechanical Engineering, 2009, 45(3): 269-274.
姜淑娟, 刘伟军, 南亮亮. 基于神经网络的激光熔覆高度预测[J]. 机械工程学报, 2009, 45(3): 269-274.

【11】Fathi A, Khajepour A, Toyserkani E, et al. Clad height control in laser solid freeform fabrication using a feedforward PID controller[J]. The International Journal of Advanced Manufacturing Technology, 2007, 35(3/4): 280-292.

【12】Shi Shihong, Wang Tao, Sun Chengfeng. A Measuring device and its measuring method of molten pool defocusing amount during laser cladding process: 201410235777.6[P]. 2014-08-13.
石世宏, 王 涛, 孙承峰. 一种激光熔覆熔池离焦量测量装置及其测量方法: 201410235777.6[P]. 2014-08-13.

【13】Wang Yiqing, Shi Tuo, Lu Bingheng, et al. Layer height measurement device and closed-loop control strategy in laser cladding forming: 201510176039.3[P]. 2015-04-14.
王伊卿, 石 拓, 卢秉恒, 等. 激光熔覆快速成形层高测量装置与闭环控制方法: 201510176039.3[P]. 2015-04-14.

【14】Wang Haibo. Study on storey dynamic control of laser 3D deposition process based on PMAC[D]. Suzhou: Soochow University, 2009.
王海波. 基于PMAC的激光三维堆积层高随动控制研究[D]. 苏州: 苏州大学, 2009.

【15】Shi Tuo, Wang Yiqing, Lu Bingheng, et al. Laser cladding forming of cantilevered thin-walled part based on hollow-laser beam inside powder feeding technology[J]. Chinese J Lasers, 2015, 42(10): 1003003.
石 拓, 王伊卿, 卢秉恒, 等. 中空激光内送粉熔覆成形悬垂薄壁件[J]. 中国激光, 2015, 42(10): 1003003.

【16】Meng Weidong, Shi Shihong, Fu Geyan, et al. Experimental study about vertical surface accumulation with coaxial inside-beam power feeding[J]. Laser Technology, 2015, 39(5): 594-597.
孟伟栋, 石世宏, 傅戈雁, 等. 光内同轴送粉立面堆积成形实验研究[J]. 激光技术, 2015, 39(5): 594-597.

【17】Shi Tuo, Lu Bingheng, Shi Shihong, et al. Laser metal deposition with spatial variable orientation based on hollow-laser beam with internal powder feeding technology[J]. Optics & Laser Technology, 2017, 88: 234-241.

【18】Song L, Bagavath-Singh V, Dutta B, et al. Control of melt pool temperature and deposition height during direct metal deposition process[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(1/4): 247-256.

【19】Lunze J. Regelungstechnik 2: mehrgrensysteme, digitale regelung[M].[S.l.]: Springer-Verlag, 2012.

【20】Qin Yanhai. The digital PID Control and its applicaion[J]. Journal of Southwest Nationalities College (Natural Science Edition), 1997, 23(1): 49-54.
秦沿海. 数字PID控制原理及其应用[J]. 西南民族大学学报(自然科学版), 1997, 23(1): 49-54.

引用该论文

Shi Tuo,Lu Bingheng,Wei Zhengying,Zhou Liang,Shi Shihong. Research of Closed-Loop Control of Deposition Height in Laser Metal Deposition[J]. Chinese Journal of Lasers, 2017, 44(7): 0702004

石拓,卢秉恒,魏正英,周亮,石世宏. 激光金属沉积堆高闭环控制研究[J]. 中国激光, 2017, 44(7): 0702004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF