首页 > 论文 > 中国激光 > 44卷 > 7期(pp:703012--1)

基于石墨烯三元复合材料的双波长孤子激光器

Dual-Wavelength Soliton Laser Based on Graphene Ternary Composite

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

报道了一种基于石墨烯三元复合材料(石墨烯/二氧化锡/聚苯胺薄膜)的可切换双波长孤子光纤激光器。该石墨烯复合材料由液相超声法制备而成, 将其制成聚合物薄膜并转移到激光器腔内。该石墨烯器件不仅可以作为一种饱和吸收体来进行锁模, 而且具有较强的三阶非线性光学效应, 在激光器中, 它可以构成一种滤波器来产生双波长脉冲。利用该双功能器件实现了光纤激光器的双波长孤子运转, 最小脉冲宽度为1.25 ps, 基本重复频率为2.13 MHz, 相应的最高单脉冲能量为1.51 nJ, 峰值功率约为1.2 kW。

Abstract

We report a switchable dual-wavelength soliton fiber laser based on graphene ternary composite, that is, graphene/SnO2/PANI film. The graphene composite is synthesized by the liquid-phase ultrasonic method, the composite is transferred into the laser cavity by the polymer-film method. The as-prepared graphene device not only can act as an excellent saturable absorber for mode-locking, but also induces a highly third-order nonlinear optical effect to form a filter for dual-wavelength pulse generation in the laser. By exploiting the dual-function of this device, the switchable dual-wavelength soliton operation of the fiber laser is stably initiated with a minimum pulse width of 1.25 ps, a fundamental repetition rate of 2.13 MHz, a pulse energy of 1.51 nJ and peak power of 1.2 kW.

投稿润色
补充资料

中图分类号:TN248

DOI:10.3788/cjl201744.0703012

所属栏目:“二维光电材料与器件”专题

基金项目:“十三五”装备预研领域基金(6140414040116CB01012)、科技部国际合作专项(2016YFE0126500)、国家自然科学基金(61575050, 61575051)、黑龙江省自然科学基金(ZD2016012, A2015015)、哈尔滨工程大学111项目(B13015)

收稿日期:2017-01-30

修改稿日期:2017-04-05

网络出版日期:--

作者单位    点击查看

郭波:哈尔滨工程大学纤维集成光学教育部重点实验室, 黑龙江 哈尔滨 150001
欧阳秋云:哈尔滨工程大学纤维集成光学教育部重点实验室, 黑龙江 哈尔滨 150001
李施:哈尔滨工程大学纤维集成光学教育部重点实验室, 黑龙江 哈尔滨 150001
方再金:哈尔滨工程大学纤维集成光学教育部重点实验室, 黑龙江 哈尔滨 150001
王鹏飞:哈尔滨工程大学纤维集成光学教育部重点实验室, 黑龙江 哈尔滨 150001

联系人作者:郭波(guobo512@hrbeu.edu.cn)

备注:郭波(1980-), 男, 博士, 讲师, 主要从事二维材料光电器件、锁模及调Q光纤激光技术、中红外激光技术及非线性物理等方面的工作。

【1】Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838.

【2】Schlager J B, Kawanishi S, Saruwatari M. Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser[J]. Electronics Letters, 1991, 27(22): 2072-2073.

【3】Deparis O, Kiyan R, Salik E, et al. Round-trip time and dispersion optimization in a dual-wavelength actively mode-locked Er-doped fiber laser including nonchirped fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 1999,11(10): 1238-1240.

【4】Matsas V J, Newson T P, Richardson D J, et al. Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.

【5】Chen Z, Sun H, Ma S, et al. Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber[J]. IEEE Photonics Technology Letters, 2008, 20(24): 2066-2068.

【6】Zhang H, Tang D, Zhao L,et al. Dual-wavelength domain wall solitons in a fiber ring laser[J]. Optics Express, 2011, 19(4): 3525-3530.

【7】Zhao X, Zheng Z, Liu L, et al. Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning[J]. Optics Express, 2011,19(2): 1168-1173.

【8】Mao D, Lu H. Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime[J]. Journal of the Optical Society of America B, 2012, 29(10): 2819-2826.

【9】Lin H, Guo C, Ruan S,et al. Tunable and switchable dual-wavelength dissipative soliton operation of a weak-birefringence all-normal-dispersion Yb-doped fiber laser[J]. IEEE Photonics Journal, 2013, 5(5): 1501807.

【10】Noske D U, Guy M J, Rottwitt K, et al. Dual-wavelength operation of a passively mode-locked “figure-of-eight” ytterbium-erbium fibre soliton laser[J]. Optics Communications, 1994, 108(4): 297-301.

【11】Yun L, Liu X, Mao D. Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiberlaser[J]. Optics Express, 2012, 20(19): 20992-20997.

【12】Ning Q Y, Wang S K, Luo A P, et al. Bright-dark pulse pair in a figure-eight dispersion-managed passively mode-locked fiber laser[J]. IEEE Photonics Journal, 2012, 4(5): 1647-1652.

【13】Zhang H, Tang D Y, Wu X, et al. Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser[J]. Optics Express, 2009,17(15): 12692-12697.

【14】Luo Z C, Luo A P, Xu W C. Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter[J]. IEEE Photonics Journal, 2011, 3(1): 64-70.

【15】Chen G W, Li W L, Yang H R, et al. Switchable dual-wavelength fiber laser mode-locked by carbon nanotubes[J]. Journal of Modern Optics, 2015, 62(5): 353-357.

【16】Liu X, Han D, Sun Z, et al. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes[J]. Scientific Reports, 2013, 3: 2718.

【17】Song Q Y, Chen G X, Tan X L, et al. Multiwavelength passively mode-locked laser based on single-walled carbon nanotube[J]. Chinese J Lasers, 2014, 41(1): 0102002.
宋秋艳, 陈根祥, 谭晓琳, 等. 基于单壁碳纳米管的多波长被动锁模激光器[J]. 中国激光, 2014, 41(1): 0102002.

【18】Wang Y B, Qi X H, Shen Y, et al. Ultra-long cavity multi-wavelength Yb-doped fiber laser mode-locked by carbon nanotubes[J]. Acta Physica Sinica, 2014, 64(20): 204205.
王玉宝, 齐晓辉, 沈 阳, 等. 超长腔碳纳米管锁模多波长掺镱光纤激光器[J]. 物理学报, 2015, 64(20): 204205.

【19】Bao Q, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

【20】Bonaccorso F, Sun Z, Hasan T,et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622.

【21】Martinez A, Fuse K, Xu B, et al. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing[J]. Optics Express, 2010, 18(22): 23054-23061.

【22】Song Y W, Jang S Y, Han W S, et al. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction[J]. Applied Physics Letters, 2010, 96(5): 051122.

【23】Liu Jiang, Wu Sida, Wang Ke, et al. Passively mode-locked and Q-switched Yb-doped fiber lasers with graphene-based saturable absorber[J]. Chinese J Lasers, 2011, 38(8): 0802001.
刘 江, 吴思达, 王 科, 等. 基于石墨烯可饱和吸收体的被动锁模,被动调Q掺镱光纤激光器[J]. 中国激光, 2011, 38(8): 0802001.

【24】Tian Zhen, Liu Shanliang, Zhang Bingyuan, et al. Graphene mode-locked Er3+ doped fiber pulse laser[J]. Chinese J Lasers, 2011, 38(3): 0302004.
田 振, 刘山亮, 张丙元, 等. 石墨烯锁模掺铒光纤脉冲激光器的实验研究[J]. 中国激光, 2011, 38(3): 0302004.

【25】He Jingliang, Hao Xiaopeng, Xu Jinlong, et al. Ultrafast mode-locked solid-state lasers with grapheme saturable absorber[J]. Acta Optica Sinica, 2011, 31(9):0900138。
何京良, 郝霄鹏, 徐金龙, 等. 基于石墨烯可饱和吸收被动锁模超快全固体激光器的研究[J]. 光学学报, 2011, 31(9): 0900138.

【26】Luo Z Q, Wang J Z, Zhou M, et al. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field[J]. Laser Physics Letters, 2012, 9(3): 229-233.

【27】Zhao N, Liu M, Liu H, et al. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber[J]. Optics Express, 2014, 22(9): 10906-10913.

【28】Huang S, Wang Y, Yan P, et al. Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser[J]. Optics Express, 2014, 22(10): 11417-11426.

【29】Zhou J, Luo A, Luo Z,et al. Dual-wavelength single-longitudinal-mode fiber laser with switchable wavelength spacing based on a graphene saturable absorber[J]. Photonics Research, 2015, 3(2): A21-A24.

【30】Wang J, Hernandez Y, Lotya M, et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 2009, 21(23): 2430-2435.

【31】Lim G K, Chen Z L, Clark J, et al. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets[J]. Nature Photonics, 2011, 5(9): 554-560.

【32】Zhang X L, Zhao X, Liu Z B,et al. Enhanced nonlinear optical properties of graphene-oligothiophene hybrid material[J]. Optics Express, 2009, 17(26): 23959-23964.

【33】Husaini S, Slagle J E, Murray J M,et al. Broadband saturable absorption and optical limiting in graphene-polymer composites[J]. Applied Physics Letters, 2013, 102(19): 191112.

【34】Kyoung M, Lee M. Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scantechnique[J]. Optics Communications, 1999, 171(1): 145-148.

【35】Anija M, Thomas J, Singh N, et al. Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain[J]. Chemical Physics Letters, 2003, 380(1): 223-229.

【36】Wang J, Han J H, Zhu B H, et al. Third-order nonlinear optical properties of graphene-CdS composites[J]. Chinese J Lasers, 2011, 42(11): 1106006.
王 记, 韩俊鹤, 朱宝华, 等. 石墨烯-硫化镉复合材料的三阶非线性光学性质[J]. 中国激光, 2015, 42(11): 1106006.

【37】Agrawal G P. Nonlinear fiber optics[M]. 5th ed. San Francisco, CA, USA: Academic, 2013.

【38】Zhao C, Zhang H, Qi X, et al. Ultra-short pulse generation by a topological insulator based saturable absorber[J]. Applied Physics Letters, 2012, 101(21): 211106.

【39】Guo B, Yao Y, Xiao J, et al. Topological insulator-assisted dual-wavelength fiber laser delivering versatile pulse patterns[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2): 8-15.

【40】Li J, Luo H, Wang L, et al. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber[J]. Optics Letters, 2015, 40(15): 3659-3662.

【41】Liu M, Zhao N, Liu H, et al. Dual-wavelength harmonically mode-locked fiber laser with topological insulator saturable absorber[J]. IEEE Photonics Technology Letters, 2014, 26(10): 983-986.

【42】Zhang H, Lu S, Zheng J C, et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics[J]. Optics Express, 2014, 22(6): 7249-7260.

【43】Mao D, Wang Y, Ma C, et al. WS2 mode-locked ultrafast fiber laser[J]. Scientific Reports, 2015, 5: 7965.

【44】Yan P, Liu A, Chen Y, et al. Microfiber-based WS2-film saturable absorber for ultra-fast photonics[J]. Optical Materials Express, 2015, 5(3): 479-489.

【45】Guo B, Yao Y, Yan P G, et al. Dual-wavelength soliton mode-locked fiber laser with a WS2-based fiber taper[J]. IEEE Photonics Technology Letters, 2016, 28(3): 323-326.

【46】Yan P, Chen H, Yin J, et al. Large-area tungsten disulfide for ultrafast photonics[J]. Nanoscale, 2017, 9: 1871-1877.

【47】Chen Y, Jiang G, Chen S, et al. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation[J]. Optics Express, 2015, 23(10): 12823-12833.

【48】Qin Z, Xie G, Zhang H,et al. Black phosphorus as saturable absorber for the Q-switched Er∶ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718.

【49】Guo B, Li S, Zhang K, et al. Hexagonal boron nitride: a rising nonlinear optical material for dual-wavelength soliton generation[D]. Harbin: Harbin Engineering University, 2016.

引用该论文

Guo Bo,Ouyang Qiuyun,Li Shi,Fang Zaijin,Wang Pengfei. Dual-Wavelength Soliton Laser Based on Graphene Ternary Composite[J]. Chinese Journal of Lasers, 2017, 44(7): 0703012

郭波,欧阳秋云,李施,方再金,王鹏飞. 基于石墨烯三元复合材料的双波长孤子激光器[J]. 中国激光, 2017, 44(7): 0703012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF