红外与毫米波学报, 2017, 36 (3): 295, 网络出版: 2017-07-05   

基于栅控二极管研究碲镉汞器件表面效应

HgCdTe surface effect based on gate-controlled diode device
作者单位
昆明物理研究所, 云南 昆明 650223
摘要
采用不同工艺生长了CdTe/ZnS复合钝化层, 制备了相应的长波HgCdTe栅控二极管器件并进行了不同条件下I-V测试分析.结果表明, 标准工艺制备的器件界面存在较高面密度极性为正的固定电荷, 在较高的反偏下形成较大的表面沟道漏电流, 对器件性能具有重要的影响.通过钝化膜生长工艺的改进有效减小了器件界面固定电荷面密度, 使HgCdTe表面从弱反型状态逐渐向平带状态转变, 表面效应得到有效抑制, 器件反向特性获得显著改善.此外, 基于最优的工艺条件制备的器件界面态陷阱数量得到大幅降低, 器件稳定性增强;同时器件R0A随栅压未发生明显地变化.
Abstract
CdTe/ZnS composite passivation layers were grown with different processes, and the corresponding LW HgCdTe gate-controlled diodes were fabricated. The I-V measurement and analysis were carried out under different conditions for these devices. The results show that the polarity of the fixed interface charge is positive and interface charge density is high for the device prepared by the standard process. The large leakage current in the surface channel is formed under high reverse bias voltage, which has an important effect on the performance of the device. The fixed interface charge density is effectively reduced by improvement of the growth process of the passivation films, which changes the HgCdTe surface from weak inversion gradually to the flat band condition. The surface effect is effectively suppressed, thus the reverse characteristics of the device can be improved significantly. In addition, the number of interface traps has been greatly reduced for the device prepared by the optimized process condition, and the stability of the device is enhanced. There is no obvious change in R0A of the device with the gate voltage.

李雄军, 韩福忠, 李东升, 李立华, 胡彦博, 孔金丞, 赵俊, 朱颖峰, 庄继胜, 姬荣斌. 基于栅控二极管研究碲镉汞器件表面效应[J]. 红外与毫米波学报, 2017, 36(3): 295. LI Xiong-Jun, HAN Fu-Zhong, LI Dong-Sheng, LI Li-Hua, HU Yan-Bo, KONG Jin-Cheng, ZHAO Jun, ZHU Ying-Feng, ZHUANG Ji-Sheng, JI Rong-Bin. HgCdTe surface effect based on gate-controlled diode device[J]. Journal of Infrared and Millimeter Waves, 2017, 36(3): 295.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!